I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
Answer: Hale-Bopp was an unusually bright comet that flew by Earth, reaching its closest approach to the planet in 1997.
Explanation:
Hale-Bopp is the answer
Answer:
1.4 m/s
Explanation:
From the question given above, we obtained the following data:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Velocity (v) =..?
The velocity of an object can be defined as the rate of change of the displacement of the object with time. Mathematically, it can be expressed as follow:
Velocity = change of displacement /time
v = Δd / Δt
Thus, with the above formula, we can obtain the velocity of the car as follow:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Change in displacement (Δd) = d2 – d1 = 1.6 – 0.9
= 0.7 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Change in time (Δt) = t2 – t1
= 2 – 1.5
= 0.5 s
Velocity (v) =..?
v = Δd / Δt
v = 0.7/0.5
v = 1.4 m/s
Therefore, the velocity of the car is 1.4 m/s
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
The correct answer is - CaCl2
The calcium chloride is a salt, an inorganic compound. Its formula is CaCl2, with Ca being calcium, Cl being chloride, and the number 2 representing the number of chloride molecules.
The calcium chloride is a white colored crystalline solid when it is at room temperature, and it is highly soluble in water, acetone, and acetic acid. It has a molar mass of 110.98 g/mol, density of 2.15 g/cm³, and melting point at 772 °C.