Answer:
The wavelength of the infrared wave is <u>0.0001 m</u>.
Explanation:
Given:
Frequency of an infrared wave is, 
We know that, infrared waves are electromagnetic waves. All electromagnetic waves travel with the same speed and their magnitude is equal to the speed of light in air.
So, speed of infrared waves coming from the Sun travels with the speed of light and thus its magnitude is given as:

Where, 'v' is the speed of infrared waves and 'c' is the speed of light.
Now, we have a formula for the speed of any wave and is given as:

Where, 
Now, rewriting the above formula in terms of wavelength,
, we get:

Now, plug in
for 'v',
for 'f' and solve for
. This gives,

Therefore, the wavelength of the infrared wave is 0.0001 m.
Force]/[force] = Newon/Newton = 1
Answer:
Hi
Final temperature = 250.11 °C
Final volume = 0,1 m3.
Process work = 0
Explanation:
The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.
This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:
v=0.05 m3/kg
v1=0.057061 m3/kg
T1=242.56°C
v2=0.049779 m3/kg
T2=250.35°C
T=
The process work is zero because there is no change in volume during heating:
W=PxΔv=Px0=0
where
W=process work
P=pressure
Δv=change of volume, is zero because the piston was blocked so the volume remains constant.
Answer:

Explanation:
Give that,
The potential difference of the electrons, 
We need to find the wavelength of the electrons.
Using the conservation of energy,

Put all the values,

So, the wavelength of the electrons is
.
Hello,
The answer is "universe, Milky Way, clusters, stars, planets".
Reason:
The universe would be the biggest because it has all the galaxy's, starts, clusters, and planets into one. Then it would be Milky Way because this is a galaxy that contains: stars, planets, and clusters. Then it would be clusters because that contains stars, or planets in one group. Then be stars because stars are bigger than planets. Then it would be planets. Therefore the order should go like this: <span>Milky Way, universe, planets, clusters, and stars.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit</span>