1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
3 years ago
9

Which body exerts the force that propels the sprinter, the blocks or the sprinter?

Physics
1 answer:
kicyunya [14]3 years ago
5 0
Answer: The blocks

Explanation:
When the sprinter takes off, he/she presses hard on the block.
The blocks apply an equal and opposite force to the sprinter according to Newton's 3rd law of motion.
The reaction force from the blocks gives the sprinter the initial acceleration to begin the race.

You might be interested in
Two long parallel wires carry currents of 3.35 A and 6.99 A . The magnitude of the force per unit length acting on each wire is
Nady [450]

Answer:

244mm

Explanation:

I₁ = 3.35A

I₂ = 6.99A

μ₀ = 4π*10^-7

force per unit length (F/L) = 6.03*10⁻⁵N/m

B = (μ₀ I₁ I₂ )/ 2πr .........equation i

B = F / L ..........equation ii

equating equation i & ii,

F / L = (μ₀ I₁ I₂ )/ 2πr

Note F/L = B = F

F = (μ₀ I₁ I₂ ) / 2πr

2πr*F = (μ₀ I₁ I₂ )

r = (μ₀ I₁ I₂ ) / 2πF

r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵

r = 1.4713*10⁻⁵ / 6.03*10⁻⁵

r = 0.244m = 244mm

The distance between the wires is 244m

7 0
3 years ago
Read 2 more answers
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
3 years ago
2.) The lob in tennis is an effective tactic when your opponent is near the net. It consists of lofting the ball over his/her he
Ratling [72]

Answer:

The minimum average speed the opponent must move so that he is in position to hit the ball is approximately 5.79 m/s

Explanation:

The given parameters of the ball are;

The initial speed of the ball = 15 m/s

The direction in which the ball is launched = 50° above the horizontal

The location of the other tennis player when the ball is launched = 10 m from the ball

The time at which the other tennis player begins to run = 0.3 seconds after the ball is launched

The height at which the ball is hit back = 2.1 m above the height from which the ball is launched

The vertical position, 'y', at time, 't', of a projectile motion is given as follows;

y = (u·sinθ)·t - 1/2·g·t²

When y = 2.1 m, we have;

2.1 = (15·sin(50°))·t - 1/2·9.8·t²

∴ 4.9·t² - (15·sin(50°))·t + 2.1 = 0

Solving with the aid of a graphing calculator function, we get;

t = 0.199776187257 s or t = 2.14525782198 s

Therefore, the ball is at 2.1 m above the start point on the other side of the court at t ≈ 2.145 seconds

The horizontal distance, 'x', the ball travels at t ≈ 2.145 seconds is given as follows;

x = u × cos(50°) × t = 15 × cos(50°) × 2.145 ≈ 20.682 m

The horizontal distance the ball travels at t ≈ 2.145 seconds, x ≈ 20.682 m

Therefore, we have;

The time the other player has to reach the ball, t₂ =2.145 s - 0.3 s ≈ 1.845 s

The distance the other player has to run, d = 20.682 m - 10 m = 10.682 m

The minimum average speed the other player has to move with, v_s = d/t₂

∴ v_s = 10.682 m/(1.845 s) ≈ 5.78970189702 m/s ≈ 5.79 m/s

The minimum average speed the opponent must move so that he is in position to hit the ball, v_s ≈ 5.79 m/s.

5 0
3 years ago
Which atomic model proposed that electrons move in specific orbits around the nucleus of an atom
BabaBlast [244]
Bohr's atomic model
8 0
3 years ago
Why are the element from period 2 grouped together
valentinak56 [21]
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
4 0
3 years ago
Other questions:
  • Do you think distance and time are relevant terms in describing motion?
    9·2 answers
  • What net force is required to cause a 1600 kg car to accelerate at a rate of 4.0
    9·1 answer
  • A spring scale calibrated in kilograms is used to determine the density of a rock specimen. The reading on the spring scale is 0
    15·1 answer
  • Squid and Octolules are propelled by expelting water, which is maintained in a body cavity. A squid of 6.5 kg (including water i
    10·1 answer
  • When you set a pot of tap water on the stove to boil, you'll often see bubbles start to form well before boiling temperature is
    14·1 answer
  • A water tank is in the shape of an inverted cone with depth 10 meters, and top radius 8 meters. Water is flowing into the tank a
    8·1 answer
  • A doctor pushes the plunger of syringe down and then pulls it up to a draw liquid into a syringe? give reason please help me wit
    15·1 answer
  • A spring of negligible mass and force constant k = 430 N/m is hung vertically, and a 0.270 kg pan is suspended from its lower en
    14·1 answer
  • How long( in hours, will it take for 500 000 C of charge to flow through a diode if it requires
    15·1 answer
  • Definition of molecular machine
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!