Answer:
Pb2+(aq) + 2Cl–(aq) ----> PbCl2(s)
Explanation:
The net ionic equation shows the main reaction that takes place in a system. Hence, a net ionic equation focusses only on those species that actually participate in the reaction.
For the reaction between Pb(NO3)2 and NH4Cl , the net ionic equation is;
Pb^+(aq) + 2Cl^-(aq) ---> PbCl2(s)
Density is mass over volume, so:
14.3/8.46≈ 1.6903 g/cm^3
Answer:
When barium chloride (BaCl 2) is dissolved in water, the water conducts electricity. In what form will the dissolved BaCl 2 be found? a. as Ba 2+ and Cl - ions b. as Ba atoms and Cl 2 molecules
Explanation:
Forming a covalent bond
A covalent bond is formed when two atoms share a pair of electrons. Covalent bonding occurs in most non-metal elements, and in compounds formed between non-metals.
These shared electrons are found in the outer shells of the atoms. Usually each atom contributes one electron to the shared pair of electrons.
The slideshow shows how a covalent bond forms between a hydrogen atom and a chlorine atom, making hydrogen chloride.
Structures of a hydrogen atom and a chlorine atom.
1. A hydrogen atom with one electron and a chlorine atom with 17 electrons
Molecules
Most covalently bonded substances consist of small molecules. A molecule is a group of two or more atoms joined together by covalent bonds. Molecules of the same element or compound always contain the same number of atoms of each element.
The atoms in a molecule are always joined together by a covalent bond. Substances that are made up of ions do not form molecules.
Sizes of atoms and simple molecules
A small molecule contains only a few atoms, so atoms and small molecules have a similar range of sizes. They are very small, typically around 0.1 nm or 1 × 10-10 m across.
Ps please mark me as brainiest please
Answer:
No net change in reaction occurs in this nucleophilic acyl subtitution reaction
Explanation:
Sodium ethoxide in ethanol gives nucleophilic acyl substitution reaction with ethyl-2-methylpropanoate.
Here ethoxide group replaces an ethoxide group from ester through addition-ellimination pathway.
So, ultimately, the product of this reaction is identical with reactant i.e. ethyl-2-methylpropanoate is reproduced.
Hence one might observe no change during reaction as product and reactant of this reaction are same.
Mechanistic pathway has been shown below.