Answer:
1) The correct answer is option b.
2) The correct answer is option a.
Explanation:
1)

At 300 K, the value of the 
The
and
is related by :

where,
= equilibrium constant at constant pressure
= equilibrium concentration constant
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 300 K
= change in the number of moles of gas = 1 - 2 = -1
Now put all the given values in the above relation, we get:


The
of the reaction = 24.63
Given = [X] = [Y] = [Z] = 1.0 M
Value of reaction quotient = Q
![Q=\frac{[Z]}{[X][Y]}=\frac{1.0 M}{1.0M\times 1.0 M}=1](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BZ%5D%7D%7B%5BX%5D%5BY%5D%7D%3D%5Cfrac%7B1.0%20M%7D%7B1.0M%5Ctimes%201.0%20M%7D%3D1)
, the equilibrium will move in forward direction that is in the right direction.
2)

At 300 K, the value of the 
Given = 
Value of reaction quotient in terms of partial pressure = 


the equilibrium will move in backword direction that is in the left direction.
The only energy for water vapor is the sun so we will all die and the water cycle won't be a thing anymore.
Answer:
Number of molecules = 23.9 × 10²³ molecules
Number of moles = 3.97 mol
Explanation:
Mass of HNO₃ = 250 g
Number of moles = ?
Number of molecules = ?
Solution:
Number of moles = mass / molar mass
Number of moles = 250 g/63 g/mol
Number of moles = 3.97 mol
Number of molecules:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 250 g of HNO₃:
250 g/ 63 g/mol = 3.97 mole
3.97 × 6.022 × 10²³ molecules = 23.9 × 10²³ molecules
True, to convert from moles to atoms, multiply the molar amount by Avogadro's number. To convert from atoms to moles, divide the atom amount by Avogadro's number (or multiply by its reciprocal).
The correct answer will be b