Answer:
Step-by-step explanation:
Supplementary angles add up to 180°.
“θ is 148° more than its supplement”
Supplement of θ = 180°-θ
θ = (180°-θ) + 148°
2θ = 328°
θ = 164°
Supplement of θ = 180°-164° = 16°
Here, I'll do the first one for you.
When they are talking about a number, use "x".
Since it says twice a number, you say 2x. Or 3x for three times the number
2x+12=3x-31
Then use algebra to find x. Get the numbers on one side and all the x's on the other.
2x+12+31=3x-31+31
2x+43-2x=3x-2x
x=43
Now do the rest on your own!
Step-by-step explanation:

Given expression is

To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get


Now, Consider Denominator, we have

can be rewritten as

![\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%201%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%202%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
![\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
Now, Consider

So, on substituting the values evaluated above, we get
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cdfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B1%20-%20%20%5Cdfrac%7B1%7D%7Bn%7D%20%7D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B1%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
Now, we know that,
![\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}}](https://tex.z-dn.net/?f=%5Cred%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cbigg%5B1%20%2B%20%5Cdfrac%7Bk%7D%7Bx%7D%20%5Cbigg%5D%5E%7Bx%7D%20%20%3D%20%20%7Be%7D%5E%7Bk%7D%7D%7D%7D%20)
So, using this, we get

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have





Hence,

So the formula is
7*(1/3+1/5) = x
First find the common denominator of the fractions. In this case the common denominator of 3 and 5 is 15 so we must convert them to 15ths. To do that we divide 15 by the denominator and take that answer and multiply the numerator by it.
So for 1/3 we take 15/3(denominator) = 5 and multiply the numerator (1) by it
5 * 1 = 5 so 1/3 converts to 5/15
Do the same for 1/5 we take 15/5 = 3 and multiply the numerator (4) by it
3*4 = 12 so 4/5 converts to 12/15
Now we add 5/15 and 12/15 = 17/15 so we have our formula now to
7*17/15
We make seven a fraction 7/1 and multiply across 7*17 = 119 and 15 * 1 = 15
We have 119/15 which when we divide and get 7 14/15 as your answer
Answer: a. $128.125
Step-by-step explanation:
The standard error of the mean is given by :
, where
= population standard deviation , n= sample size.
Given: 
n= 256
Then, the standard error of the mean:-

Hence, option a. is correct.