Answer:
Explanation:
Ionic bond:
It is the bond which is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
For example:
Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion. Both atoms are joint together by electrostatic interaction and ionic compound sodium chloride is formed.
Covalent bond:
It is formed by the sharing of electron pair between bonded atoms.
The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive and both bonded atoms connected together through covalent bond.
Answer:
The correct answer is a hypothesis.
You need to use the Ka for the acetic acid and the equilibrium equation.
Ka = 1.85 * 10^ -5
Equilibrium reaction: CH3COOH (aq) ---> CH3COO(-) + H(+)
Ka = [CH3COO-][H+] / [CH3COOH]
Molar concentrations at equilibrium
CH3COOH CH3COO- H+
0.50 - x x x
Ka = x*x / (0.50 - x) = x^2 / (0.50 - x)
Given that Ka is << 1 => 0.50 >> x and 0.50 - x ≈ 0.50
=> Ka ≈ x^2 / 0.50
=> x^2 ≈ 0.50 * Ka = 0.50 * 1.85 * 10^ -5 = 0.925 * 10^ - 5 = 9.25 * 10 ^ - 6
=> x = √ [9.25 * 10^ -6] = 3.04 * 10^ -3 ≈ 0.0030
pH = - log [H+] = - log (x) = - log (0.0030) = 2.5
Answer: 2.5
Answer:
m = 21.915 g of NaC to create the right balance between
Answer:


Explanation:
Hello!
In this case, since the molecular formula of glycine is C₂H₅NO₂, we realize that the molar mass is 75.07 g/mol; thus, the moles in 130.0 g of glycine are:

Furthermore, we can notice 75.07 grams of glycine contains 14.01 grams of nitrogen; thus, the percent nitrogen turns out:

Best regards!