Answer:
0.127M
Explanation:
Molarity of a solution = number of moles (n) ÷ volume (V)
Molar mass of Mg(NO3)2 = 24 + (14 + 16(3)}2
= 24 + {14 + 48}2
= 24 + 124
= 148g/mol
Using the formula, mole = mass/molar mass, to convert mass of Mg(NO3)2 to mole
mole = 14g ÷ 148g/mol
mole = 0.095mol
Volume = 750mL = 750/1000 = 0.75L
Molarity = 0.095mol ÷ 0.75L
Molarity = 0.127M
I would say false hope that helped
The correct answer is option B. The most dense phase of matter is the solid phase and the least dense are gases. However, there is an exception. Water is the exception. Solid water or ice is less dense than the liquid phase therefore it floats on liquid water.
Answer:
= 9.28 g CO₂
Explanation:
First write a balanced equation:
CH₄ + 2O₂ -> 2H₂O + CO₂
Convert the information to moles
7.50g CH₄ = 0.46875 mol CH₄
13.5g O₂ = 0.421875 mol O₂
Theoretical molar ratio CH₄:O₂ -> 1:2
Actual ratio is 0.46875 : 0.421875 ≈ 1:1
If all CH₄ is used up, there would need to be more O₂
So O₂ is the limiting reactant and we use this in our equation
Use molar ratio to find moles of CO₂
0.421875 mol O₂ * 1 mol CO₂/2 mol O₂=0.2109375 mol CO₂
Then convert to grams
0.2109375 mol CO₂ = 9.28114 g CO₂
round to 3 sig figs
= 9.28 g CO₂