#include<studio.h>
int main( )
{
int n;
int a,b,c,d,x,y;
int avarage;
printf("enter value of n:\n");
scanf("%d",&n);
printf("enter value of a:\n,b:\n,c:\n,d:\n,x:\n,y:\n);
scan f("%d\%d\n%d\n%d\n%d\n%d\n",&a,b,c,d,x,y);
sum=(a+b+c+d+x+y);
avarage=(sum/n);
print f("%d",avarage);
if
{
n=positive interger
}
else
{
printf ("n must be positive");
}
return 0;
}
When a force acts on a body along some path, the work done is W=F*s, where W is the work done, F is the force that is doing the work on the body and s is the path. The force doing the work has to be in the same direction, or parallel, as the path. This is called positive work. If the force and the path are anti-parallel, the work is negative. So the relationship between work and force is W=F*s.
The answer is cooler. Hope this helps.
Solution:
f ( t )= 20 S ( t ) + 55/30 tS ( t )− 55/30 ( t − 30 ) S ( t − 30 )
• Taking the Laplace Transform:
F ( s ) = 20/s + 55/30 ( 1/s^2 ) – 55/30 ( 1/s^2) e^-30s = 20/s + 55/30 ( 1/s^2 ) ( 1 – e^-30s)
In the conservation of mass, mass is never created or destroyed in chemical reactions in the same way water is not created or destroyed it is only transferred from one form to another and its mass is always conserved.