Kinetic energy depends on the mass and the speed of a moving object.
If the speeds are equal, then the rick with more mass has more kinetic energy.
Would be A 1012 N/C because The magnitude of the electric field at distance r from a point charge q is E=k
e
q/r
2
, so
E=
(5.11×10
−11
m)
2
(8.99×10
9
N.m
2
/C
2
)(1.60×10
−19
C)
=5.51×10
11
N/C∼10
1
2N/C
making (e) the best choice for this question.
Answer:
1) x_total = 2.7 km=2700 m, 2) t_total = 1926 s, 3) v_avg = 1.40 m / s
Explanation:
1) To solve this uniform velocity problem, we must find the displacement of each part and add them.
x_total = x₁ + x₂
x_total = 0.7 + 2.0
x_total = 2.7 km
2) how long does it take for this tour
truck
v = x₁ / t₁
t₁ = x₁ / v
t₁ = 0.7 / 20
t₁ = 0.035 h
Let's reduce the time to the SI system
t₁ = 0.035 h (3600 s / 1h) = 126 s
when he is walking
t₂ = 30 min (60 s / 1min) = 1800 s
the total time is
t_total = t₁ + t₂
t_total = 126 + 1800
t_total = 1926 s
3) the average velocity is defined as the displacement in the inerval between time
v_avg = x_total / t_total
v_avg = 2700/1926
v_avg = 1.40 m / s
Answer:
The velocity and height is 31 m/s and 44.4 m respectively .
Explanation:
Given :
Initial speed of rock , u = 8.5 m/s .
Time taken to reach ground , t = 2.25 s .
Also , acceleration due to gravity is ,
.
Now , to find the velocity when it hit ground .
Applying equation of motion :

Also , height from which rock is thrown is given by :

Hence , this is the required solution .
Answer:
Weight=686.7N,
, S.G.=0.933, F=17.5N
Explanation:
So, the first value the problem is asking us for is the weight of methanol. (This is supposing there is a mass of methanol of 70kg inside the tank). We can find this by using the formula:
W=mg
so we can substitute the data the problem provided us with to get:

which yields:
W=686.7N
Next, we need to find the density of methanol, which can be found by using the following formula:

we know the volume of methanol is 75L, so we can convert that to
like this:

so we can now use the density formula to find our the methanol's density, so we get:



Next, we can us these values to find the specific gravity of methanol by using the formula:

when substituting the known values we get:

so:
S.G.=0.933
We can now find the force it takes to accelerate this tank linearly at 
F=ma

F=17.5N