Answer:
The answers are in the explanation section below
Explanation:
1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.
2) The positive test charge will have the least potential energy when it gets to the negative electrode point.
3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.
4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.
The pattern to be sketched is attached.
There are some more like Time - second (s)
Amount of substance - mole (mole)
Electric current - ampere (A)
Temperature - kelvin (K)
Luminous intensity - candela (cd)
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Answer:
2.87m
Explanation:
Using the law of gravitation to solve this question
F = GMm/r²
G is the gravitational constant
M and m are the masses
r is the distance between the masses
Substitute the given values
G = 6.67×10^-11 m³/kgs²
M =8.8 x 10^6 kg
m = 5.6 x 10^5 kg
F =440N
400 = 6.67×10^-11×8.8 x 10^6 ×5.6 x 10^5/r²
400r² = 328.698×10
400r² = 3286.98
r² = 3286.98/400
r² = 8.21745
r = √8.21745
r = 2.87m
Hence the distance of separation is 2.87m
Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>