Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum
before the collision must be equal to the final momentum
after the collision:
(1)
Being:


Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding
:
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since 
Substituting (8) in (6):
(9)
(10)
Finally:

<h2>
Answer:53.63
</h2>
Explanation:
The equations of motion used in this question is 
When a object is projected horizontally from a sufficiently height,the x-component of acceleration remains zero because there is no force that drags the object in x direction.
But,due to gravity,the object accelerates downward at a rate of
.
In X-Direction,
Given that initial velocity=
=
Using
,

In Y-Direction,
Given that initial velocity=
=
Using
,



Answer:
1.5 km/s²
Explanation:
Given that:
a car starts from rest; it means the initial velocity (u) = 0 km/hr = 0 m/s
after time (t) = 20 seconds
the final velocity = 108 km/hr = 30 m/s
The acceleration (a) of the car can be determined by using the formula:



a = 1.5 km/s²
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
The forward force you exert on the fish and your backward action will allow you to reach the shore.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that for every action, there is an equal and opposite reaction.
Fa = -Fb
Let's assume the fish is held in the hook, this will give you the opportunity to throw the fish forward while still holding it.
When the the fish is thrown forward, you will move backwards with an equal force based on Newton's third law. Your backward momentum towards the shore will help to maintain equal linear momentum between you and the fish.
Thus, this forward force of the fish and your backward action will allow you to reach the shore.
Learn more Newton's third law of motion here: brainly.com/question/25998091