I am not good at math but what grade r u in cause i am in 9th and if u r then i might can help
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer:
(a) X- axis represent (1/P) inverse of pressure
(b) Y-axis represent (V) volume
Explanation:
Boyle's Law States that at constant temperature, the volume of a fixed mass of gas is inversly proportional to its pressure. It can be expressed mathematically as
V α 1/P
VPα1
removing the proportionality sign and introducing a constant
VP = k
V₁P₁ = V₂P₂
Where V₁ and V₂ are initial and final volume respectively, P₁ and P₂ are initial and final pressure respectively.
If the graph for Boyle's law is straight line through the origin,
(a) X-axis represent (1/P) inverse of pressure
(b) Y- axis represent (V) volume.
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer:
Explanation:
Given: Density of blood = 1.03 × 10³ Kg/m³, Height = 1.93 m g = 9.8 m/s²
pressure at the brain is equal to atmospheric pressure. = Hydro-static
pressure(ρ₀)
∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)
Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)
Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh
Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa
∴ Hydro-static pressure ≈ 1.95 × 10⁴ Pa