1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
11

Prime factorazation of 13​

Mathematics
1 answer:
Neporo4naja [7]3 years ago
4 0

Answer:

  13 = 13

Step-by-step explanation:

13 is a prime, so 13 is its only prime factor.

You might be interested in
What is the value of log81 3? Show your work
horsena [70]
If log^{81}  _{3} = x
Then 3^{x}=81
3^x=3^4
Therefore, x = 4.
Please mark me as brainliest!
5 0
3 years ago
Find the volume of the cylinder. leave your answer in terms of 3.14
Lapatulllka [165]

Answer:

3.14 * r^2 * h

Step-by-step explanation:

7 0
3 years ago
Help im being timed
Oksanka [162]

Answer:

he made the error in step 2

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Find the inverse of each function for problems 1–6. State the domain and range of both the function and its inverse. Restrict th
JulsSmile [24]

Answer:

1.

<u>Function:</u>

f(x)=-x^2

Domain: (-∞,∞)

Range: (-∞,0]

<u>Inverse Function:</u>

f^{-1}(x)=\sqrt{-x} ,and\\f^{-1}(x)=-\sqrt{-x}

Domain: (-∞,0]

Range: (-∞,∞)


2.

<u>Function:</u>

f(x)=5x-1

Domain: (-∞,∞)

Range: (-∞,∞)

<u>Inverse Function:</u>

f^{-1}(x)=\frac{1}{5}x+\frac{1}{5}

Domain: (-∞,∞)

Range: (-∞,∞)


3.

<u>Function:</u>

f(x)=-x+3

Domain: (-∞,∞)

Range: (-∞,∞)

<u>Inverse Function:</u>

f^{-1}(x)=-x+3

Domain: (-∞,∞)

Range: (-∞,∞)


4.

<u>Function:</u>

f(x)=x^{2}+7

Domain: (-∞,∞)

Range: [7,∞)

<u>Inverse Function:</u>

f^{-1}(x)=\sqrt{x-7}, and\\f^{-1}(x)=-\sqrt{x-7}

Domain: [7,∞)

Range: (-∞,∞)


5.

<u>Function:</u>

f(x)=14x-4

Domain: (-∞,∞)

Range: (-∞,∞)

<u>Inverse Function:</u>

f^{-1}(x)=\frac{1}{14}x+\frac{2}{7}

Domain: (-∞,∞)

Range: (-∞,∞)


6.

<u>Function:</u>

f(x)=-3x+8

Domain: (-∞,∞)

Range: (-∞,∞)

<u>Inverse Function:</u>

f^{-1}(x)=-\frac{1}{3}x+\frac{8}{3}

Domain: (-∞,∞)

Range: (-∞,∞)


Step-by-step explanation:

To find inverse of a function f(x), there are 4 steps we need to follow:

1. Replace f(x) with y

2. Interchange the y and x

3. Solve for the "new" y

4. Replace the "new" y with the notation for inverse function,  f^{-1}(x)

<u>Note:</u> The domain of the original function f(x) is the range of the inverse and the range of the original function is the domain of the inverse function.

<u><em>Let's calculate each of these.</em></u>


1.

f(x)=-x^2

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: No matter what we put into x, the y values will always be negative. And if we put 0, y value would be 0. So range is (-∞,0]

<u>Finding the inverse:</u>

f(x)=-x^2\\y=-x^2\\x=-y^2\\y^2=-x\\y=+-\sqrt{-x} \\y=\sqrt{-x}, -\sqrt{-x}

So

f^{-1}(x)=\sqrt{-x} ,and\\f^{-1}(x)=-\sqrt{-x}

Domain: this is the range of the original so domain is (-∞,0]

Range: this is the domain of the original so range is (-∞,∞)


2.

f(x)=5x-1

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: All sorts of y values will occur, so the range is (-∞,∞)

<u>Finding the inverse:</u>

f(x)=5x-1\\y=5x-1\\x=5y-1\\5y=x+1\\y=\frac{1}{5}x+\frac{1}{5}

So

f^{-1}(x)=\frac{1}{5}x+\frac{1}{5}

Domain: this is the range of the original so domain is (-∞,∞)

Range: this is the domain of the original so range is (-∞,∞)


3.

f(x)=-x+3

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: All sorts of y values will occur, so the range is (-∞,∞)

<u>Finding the inverse:</u>

f(x)=-x+3\\y=-x+3\\x=-y+3\\y=-x+3

So

f^{-1}(x)=-x+3

Domain: this is the range of the original so domain is (-∞,∞)

Range: this is the domain of the original so range is (-∞,∞)


4.

f(x)=x^{2}+7

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: no matter what we put into x, it will always be a positive number greater than 7. Only when we put in 0, y will be 7. So 7 is the lowest number and it can go to infinity. Hence the range is [7,∞)

<u>Finding the inverse:</u>

f(x)=x^2+7\\y=x^2+7\\x=y^2+7\\y^2=x-7\\y=+-\sqrt{x-7}

So

f^{-1}(x)=\sqrt{x-7}, and\\f^{-1}(x)=-\sqrt{x-7}

Domain: this is the range of the original so domain is [7,∞)

Range: this is the domain of the original so range is (-∞,∞)


5.

f(x)=14x-4

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: no matter what we put into x, we can get any y value from negative infinity to positive infinity. So range is (-∞,∞)

<u>Finding the inverse:</u>

f(x)=14x-4\\y=14x-4\\x=14y-4\\14y=x+4\\y=\frac{1}{14}x+\frac{2}{7}

So

f^{-1}(x)=\frac{1}{14}x+\frac{2}{7}

Domain: this is the range of the original so domain is (-∞,∞)

Range: this is the domain of the original so range is (-∞,∞)


6.

f(x)=-3x+8

Domain: There is no restriction on values of x we can put on it. Hence domain is (-∞,∞)

Range: no matter what we put into x, we can get any y value from negative infinity to positive infinity. So range is (-∞,∞)

<u>Finding the inverse:</u>

f(x)=-3x+8\\y=-3x+8\\x=-3y+8\\3y=-x+8\\y=-\frac{1}{3}x+\frac{8}{3}

So

f^{-1}(x)=-\frac{1}{3}x+\frac{8}{3}

Domain: this is the range of the original so domain is (-∞,∞)

Range: this is the domain of the original so range is (-∞,∞)

8 0
4 years ago
Can 51/54 be simplified
melisa1 [442]
We can reduce the fraction by dividing
the numerator and denominator by 3
and get our simplified answer
<span>=<span>51 ÷ 3/54 ÷ 3</span>=<span>17/<span>18
The </span></span></span>Answer:
<span>=<span>17/<span>18

</span></span></span>
3 0
4 years ago
Read 2 more answers
Other questions:
  • A meteorologist said it rained during 30% of the past 70 days. How many days did it rain?
    6·1 answer
  • What is 6 divided by 3/8
    8·2 answers
  • For the geometric sequence of a1=2 and r=2 find a5
    5·1 answer
  • Simplify the fraction 22/4
    15·1 answer
  • Please help! Look at the picture.
    7·1 answer
  • When Raphael solved the system below by using the method of elimination, he changed the second equation to -8x-2y=-2 what proper
    5·1 answer
  • The closer the linear correlation coefficient between two observations x and y is to 1, the more evidence one has to claim that
    8·1 answer
  • Write an equation (-2, 10), (10, -14)
    15·1 answer
  • Find the measure of one interior angle of a regular 7-gon
    11·1 answer
  • X-9= -6<br> Please help me answer this question ASAP
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!