Answer:
Steel and cast iron
Explanation:
They are all metal but assuming that you are finding the best material for your pan i suggest going for steel or cast iron
Explanation:
(a) potassium oxide with water

According to reaction,1 mole of potassium oxide reacts with 1 mole of water to give 1 mole of potassium hydroxide.
(b) diphosphorus trioxide with water

According to reaction,1 mole of diphosphorus trioxide reacts with 2 moles of water to give 2 moles of phosphorus acid.
(c) chromium(III) oxide with dilute hydrochloric acid,

According to reaction,1 mole of chromium(III) oxide reacts with 6 moles of hydrochloric acid to give 2 moles of chromium(III) chloride and 3 moles of water.
(d) selenium dioxide with aqueous potassium hydroxide

According to reaction,1 mole of selenium dioxide reacts with 2 moles of potassium hydroxide to give 1 mole of potassium selenite and 1 mole of water.
Answer:
In Cl
, the 2 is a subscript because it indicates there are 2 of the same elements. The Lewis structure would display it as Cl-Cl.
On the other hand, a superscript would indicate a specific charge.
All subscripts show the amount of the specific element there is.
An example would be O
or N
, they both show that there are 2 of the same elements.
If the subscript is outside a parenthesis such as
it indicates there are 2
molecules.
<span>In the cells of the human body,oxygen molecules are used directly in a process that releases energy</span>
<span>30.0 ml of 0.15 m K2CrO4 solution will have more potassium ions.
Let's see the relative number of potassium ions for each solution. Since all the measurements are the same, the real difference is the K2CrO4 will only have 2 potassium ions per molecule while the K3PO4 solution will have 3 potassium ions per molecule.
K2CrO4 solution
30.0 * 0.15 * 2 = 9
K3PO4 solution
25.0 * 0.080 * 3 = 6
Since 9 is greater than 6, the K2CrO4 solution will have more potassium ions.</span>