Answer:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Explanation:
Hello,
In this case, since the solubility in water is related with the presence of polar bonds in the given molecules we can see that C6H12(OH)2 has the presence two O-H bonds which promote the highest solubility via hydrogen bonds as well as the C6H13OH but in a lower degree as only on O-H bond is present. Next since the bond C-Br in is slightly close to the polar bond C6H13Br rather than the C-C bonds only had by C6H14 we can infer that C6H13Br is more soluble in water than C6H14, therefore the required order is:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Whereas C6H12(OH)2 is the most soluble and C6H14 the least soluble in water.
Best regards.
Answer:
Most likely A. Molten lava, since it straight up melts the equipment which is much faster than chemicals dissolving the equipment like hydrochloric acid and nitric acid.
Explanation:
Hope this helped!
P.S. Sure, why not?
Biodiversity is all ecosystems on Earth that support habitats. The ecosystem that wiuodl most likely hsve the greatest diversity woodlouse be the the jungke bevcause itb need the most baviar it need the right climate and also need s goalpost ster for sll the animals tht ;ive there.<span />
<span>Throughout the development of particle physics, scientists have created different models to understand the atom. When we are talking about the diameter of an atom, we would refer to the Bohr radius, which is the radius from the nucleus to the orbiting electron.
In this case, a hydrogen atom has one electron, and the Bohr radius in the ground state is 5.29 x 10^{-11} meters. To find the diameter, we just multiply the Bohr radius by 2.
diameter = 2 x 5.29 x 10^{-11} meters
diameter = 10.58 x 10^{-11} meters
diameter = 1.058 x 10^{-10} meters
The diameter of a hydrogen atom in ground state is:
1.058 x 10^{-10} meters</span>
The original mass of krypton 81 that is present in the ice is 6.70 grams.
<h3>How do we calculate original mass?</h3>
Original mass of any substance will be calculated as below for the decomposition reaction is:
N = N₀(1/2)ⁿ, where
N = remaining mass of krypton-81 = 1.675g
N₀ = original mass of krypton-81 = ?
n will be calculated as:
n = T/t, where
T = total time period = 458,000 years
t = half life time = 229,000 years
n = 458,000/229,000 = 2
Now putting all these values on the above equation, we get
N₀ = 1.675 / (1/2)²
N₀ = 6.70 g
Hence required mass is 6.70 g.
To know more about half life time, visit the below link:
brainly.com/question/2320811