Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:


t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:

d = 20.2 m
The rock lands at 20,2 m from the base of the cliff
Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

206Pb = 1.342 x10^22 atoms
<span>To find the number of atoms, you must first find the number of moles. If 238U is 238.029g/mol, and we have 1.75 grams, how many moles is that? 1.75 divided by 238.029 = 0.007352045 moles. To find the number of atoms in 0.007352045 moles, you multiply by a mole: </span>
<span>0.007352045 x 6.02 x 10^23 = 4.426 x10^21 atoms. </span>
<span>Same procedure for 206Pb: </span>
<span>4.59 divided by 205.97446 = 0.022284316 moles </span>
<span>0.022284316 x 6.02 x 10^23 = 1.342 x10^22 atoms. </span>
<span>Hope that helps you!
https://answers.yahoo.com/question/index?qid=20100331153014AAoMXcu
</span>
Because dark line spectra result from passing white light through ionized gasses and plasmas, which is what the atmosphere of stars are made of. These frequencies are scattered by the star's atmosphere as it leaves the surface (photosphere) of the star, and don't make it to earth.