1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
9

You drop a ball from a height of 1.7 m, and it bounces back to a height of 1.2 m.

Physics
1 answer:
leva [86]3 years ago
8 0

Answer:

A)       ΔEm = 0.29,  B)   v₁ = 5.8 m/s, c)   v₂=  4.9 m / s    D) the correct answer from 4

Explanation:

For this exercise we will use conservation of energy, taking care of how to choose our system

A) For this case we take two instants

starting point. When the ball goes out

        Em₀ = U = m g y₁

Final point. When the ball reaches its maximum height

         Em_{f} = U = m g y₂

In this case we see that there is a loss of mechanical energy at the moment of rebound, therefore the fraction of energy lost is

          ΔEm = Em_{f} / Em₀

          ΔEm = mg y₂ / mg y₁

          ΔEm = y₂ / y₁

          ΔEm = 1.2 / 1.7

the lost part of energy  

          ΔEm = 1 -0.706

          ΔEm = 0.29

B) the velocity just before the bounce

starting point. When the ball is released

          Em₀ = U = m g y₁

final punot. Just wide of the bounce

           Em_{f} = K = ½ m v₁²

As it has not yet rebounded, it has no energy loss, therefore the mechanical energy is conserved

            Em₀ = Em_{f}

            m g y₁ = ½ m v₁²

             v₁ = √ 2 g y₁

let's calculate

            v₁ =√ (2 9.8 1.7)

             v₁ = 5.77 m / s

            v₁ = 5.8 m/s

C) the velocity just after the bounce

   starting point, after bounce

               Em₀ = K = ½ m v₂²

   final point. Maximum height after bounce

               Em_{f} = U = m g y₂

as it already bounced, the energy is conserved in this interval

               Em₀ = Em_{f}

               ½ m v₂² = m g y₂

               v₂ = √ (2 g y₂)

               v₂ = √ (2 9.8 1.2)

               v₂ = 4.85 m / s

               v₂=  4.9 m / s

D) during the time that the bounce lasts, there is a strong change in energy, part of it is transformed into thermal energy, due to several processes: friction, change in the potential energy of the molecules of the ball, change in the internal energy of the balls. molecules.

Therefore we cannot specify a single process, consequently the correct answer from 4

You might be interested in
Pls help me with this question
Arisa [49]

Answer:

dam 15 marks for that question that's ez marks there

4 0
2 years ago
A sound that's produced by a single wave at a constant frequency and with no overtones is called
notka56 [123]
It is called a pure sound
7 0
3 years ago
Illustrate a body of mass 5.0kg pulled by horizontal force F . if the body accelerates 2.0ms² and experience a frictional force
Natasha2012 [34]

Explanation:

a. Net force is mass times acceleration (Newton's second law).

∑F = ma

∑F = (5.0 kg) (2.0 m/s²)

∑F = 10 N

b. The net force is the sum of the individual forces.

10 N = F − 5 N

F = 15 N

c. Friction force here is mgμ.

mgμ = 5 N

(5.0 kg) (10 m/s) μ = 5 N

μ = 0.1

3 0
3 years ago
A 6- F capacitor is charged to 90 V and is then connected across a 700- resistor. What is the initial charge on the capacitor
Lorico [155]

Answer:

540C.

Explanation:

A capacitor of capacitance C when charged to a voltage of V will have a charge Q given as follows;

Q = CV          ----------(i)

From the question, the initial charge on the capacitor is the charge on it before it was connected to the resistor. In other words, the initial charge on the capacitor will have a maximum value which can be calculated using equation (i) above.

Where;

C = 6F

V = 90V

Substitute these values into equation (i) as follows;

Q = 6 x 90

Q = 540 C

Therefore, the initial charge on the capacitor is 540C.

7 0
2 years ago
Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
grandymaker [24]

Answer:

frequency of the sound = f = 1,030.3 Hz

phase difference = Φ = 229.09°

Explanation:

Step 1: Given data:

Xini = 0.540m

Xfin = 0.870m

v = 340m/s

Step 2: frequency of the sound (f)

f = v / λ

λ = Xfin - Xini = 0.870 - 0.540 = 0.33

f = 340 / 0.33

f = 1,030.3 Hz

Step 3: phase difference

phase difference = Φ

Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984

Φ = 3.9984 rad * (360°/2π rad)

Φ = 229.09°

Hope this helps!

5 0
3 years ago
Other questions:
  • Suppose the roller-coaster car in fig.6–41 passes point 1 with a speed of if the average force of friction is equal to 0.23 of i
    5·1 answer
  • Accuracy in scientific investigation is important because
    6·1 answer
  • Read the given list of organisms.
    5·2 answers
  • 1) Halving the distance (i.s., decreasing by a factor of two) between two charged objects will cause the electrical force betwee
    8·1 answer
  • What universal force is primarily responsible for keeping satellites in orbit around Earth?
    13·2 answers
  • 5. What is the amplitude of the waves shown in the diagram below?
    10·1 answer
  • 22. In an experiment to determine the density of a soil using a density bottle, the following measuren were recorded. Mass of em
    7·1 answer
  • A person pulls a box across the floor with a rope. The rope makes an angle of 40 degrees tot he horizontal, and a total of 125 n
    5·1 answer
  • What is energy and types of energy<br>​
    6·2 answers
  • Find the acceleration of the blocks when the system is released. The coefficient of kinetic friction is 0.4, and the mass of eac
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!