1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
9

You drop a ball from a height of 1.7 m, and it bounces back to a height of 1.2 m.

Physics
1 answer:
leva [86]3 years ago
8 0

Answer:

A)       ΔEm = 0.29,  B)   v₁ = 5.8 m/s, c)   v₂=  4.9 m / s    D) the correct answer from 4

Explanation:

For this exercise we will use conservation of energy, taking care of how to choose our system

A) For this case we take two instants

starting point. When the ball goes out

        Em₀ = U = m g y₁

Final point. When the ball reaches its maximum height

         Em_{f} = U = m g y₂

In this case we see that there is a loss of mechanical energy at the moment of rebound, therefore the fraction of energy lost is

          ΔEm = Em_{f} / Em₀

          ΔEm = mg y₂ / mg y₁

          ΔEm = y₂ / y₁

          ΔEm = 1.2 / 1.7

the lost part of energy  

          ΔEm = 1 -0.706

          ΔEm = 0.29

B) the velocity just before the bounce

starting point. When the ball is released

          Em₀ = U = m g y₁

final punot. Just wide of the bounce

           Em_{f} = K = ½ m v₁²

As it has not yet rebounded, it has no energy loss, therefore the mechanical energy is conserved

            Em₀ = Em_{f}

            m g y₁ = ½ m v₁²

             v₁ = √ 2 g y₁

let's calculate

            v₁ =√ (2 9.8 1.7)

             v₁ = 5.77 m / s

            v₁ = 5.8 m/s

C) the velocity just after the bounce

   starting point, after bounce

               Em₀ = K = ½ m v₂²

   final point. Maximum height after bounce

               Em_{f} = U = m g y₂

as it already bounced, the energy is conserved in this interval

               Em₀ = Em_{f}

               ½ m v₂² = m g y₂

               v₂ = √ (2 g y₂)

               v₂ = √ (2 9.8 1.2)

               v₂ = 4.85 m / s

               v₂=  4.9 m / s

D) during the time that the bounce lasts, there is a strong change in energy, part of it is transformed into thermal energy, due to several processes: friction, change in the potential energy of the molecules of the ball, change in the internal energy of the balls. molecules.

Therefore we cannot specify a single process, consequently the correct answer from 4

You might be interested in
If the average distance between bumps on a road is about 10 m and the natural frequency of the suspension system in the car is a
Mnenie [13.5K]
When you hit a bump every 0.9 seconds.
3 0
3 years ago
What causes earthquake s to occur?​
Sliva [168]

Answer:

tilte in the earth

Explanation:

6 0
2 years ago
Read 2 more answers
Science and math people where you at
PilotLPTM [1.2K]
For the second question you’re solving for resistance. resistance= voltage/ current. 120/0.5= 240. the answer is 240 ohms
for the third question you would do 2*4 since it’s asking for voltage, the answer is 8 volts :)
8 0
3 years ago
The photeselestric effect is observed when light of a sufficiently high frequency is focused onto a polished metal surface, emit
Helga [31]

Answer:

3.4\cdot 10^{-19} J

Explanation:

In order to convert the work function of cesium from electronvolts to Joules, we must use the following conversion factor:

1 eV = 1.6 \cdot 10^{-19} J

In our problem, the work function of cesium is

E=2.1 eV

so, we can convert it into Joules by using the following proportion:

1 eV : 1.6\cdot 10^{-19} J = 2.1 eV : x\\x=\frac{(1.6\cdot 10^{-19} J)(2.1 eV)}{1 eV}=3.4\cdot 10^{-19} J

8 0
3 years ago
The work done by an external force to move a -6.70 μc charge from point a to point b is 1.20×10−3 j .
ASHA 777 [7]

Answer:

108.7 V

Explanation:

Two forces are acting on the particle:

- The external force, whose work is W=1.20 \cdot 10^{-3}J

- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: W_e=q\Delta V

where

q is the charge

\Delta V is the potential difference

The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

K_f - K_i = W + W_e = W+q\Delta V

and since the charge starts from rest, K_i = 0, so the formula becomes

K_f = W+q\Delta V

In this problem, we have

W=1.20 \cdot 10^{-3}J is the work done by the external force

q=-6.70 \mu C=-6.7\cdot 10^{-6}C is the charge

K_f = 4.72\cdot 10^{-4}J is the final kinetic energy

Solving the formula for \Delta V, we find

\Delta V=\frac{K_f-W}{q}=\frac{4.72\cdot 10^{-4}J-1.2\cdot 10^{-3} J}{-6.7\cdot 10^{-6}C}=108.7 V

4 0
3 years ago
Read 2 more answers
Other questions:
  • A purse at radius 2.30 m and a wallet at radius 3.45 m travel in uniform circular motion on the floor of a merry-go-round as the
    11·1 answer
  • How many protons and neutrons are present in an atom of 3919k? express your answer as integers separated by a comma?
    7·1 answer
  • Which of the following statements is true about scientific theories?
    11·1 answer
  • Which product of alcoholic fermentation causes dough to rise and creates the little holes in bread? A. water B. oxygen C. glucos
    15·1 answer
  • You are In-line skates at the top of a small hill. Your potential energy is equal to 1000 J. The last time we checked, your mass
    9·1 answer
  • A meteorologist tracks the movement of a thunderstorm with Doppler radar. At 8:00pm the storm was 55 mi northeast of her station
    11·1 answer
  • A jet plane passes over you at a height of 5870 m and a speed of Mach 1.47. (a) Find the Mach cone angle. (b) How long after the
    13·1 answer
  • What force will accelerate a 20 kg object at 4 m/s 2? *
    5·1 answer
  • 17. A microphone of surface area 2.0 cm’ absorbs 1.1 mW of sound. What is the intensity
    13·1 answer
  • Which would most likely form a homogenous mixture?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!