To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So


Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,



Therefore the tension force in the cable is 10290.15N
Because radio waves can travel in space but sound waves cannot.
Answer:
d. 332 V
Explanation:
Given;
number of turns in the wire, N = 40 turns
area of the coil, A = 0.06 m²
magnitude of the magnetic field, B = 0.4 T
frequency of the wave, f = 55 Hz
The maximum emf induced in the coil is given by;
E = NBAω
Where;
ω is angular velocity = 2πf
E = NBA(2πf)
E = 40 x 0.4 x 0.06 x (2 x π x 55)
E = 332 V
Therefore, the maximum induced emf in the coil is 332 V.
The correct option is "D"
d. 332 V
Answer:
False
Explanation:
This proposition is false because by example the sun exerts a force over the earth and them are not in contact
A transmitter “encodes” or modulates messages by varying the amplitude or frequency of the wave – a bit like Morse code. At the other, a receiver tuned to the same wavelength picks up the signal and 'decodes' it back to the desired form
I think it’s A or D