Answer:
When a bullet is fired from a gun, the gun exerts a force on the bullet in the forward direction. This is force is called as the action force. The bullet also exerts an equal and opposite force on the gun in the backward direction. Therefore a gun recoils when a bullet is fired from it.
The 7.5 is a 100 times stronger than the 5.5 . The 100 comes from the increase in scale from 5.5 to 7.5 which is an increase of two so you multiply the strength of the weaker earthquake 10^7-5=10^2=100 and that gives you the strength of the stronger earthquake!
Answer:
It is unsafe
Explanation:
v = Velocity of car = 34 m/s
r = Radius of turn = 190 m
= Coefficient of static friction = 0.5
m = Mass of car = 1600 kg
g = Acceleration due to gravity = 9.81 m/s²
The centripetal force is given by

The frictional force is given by

If the centripetal force is greater than the frictional force then the car will slip which makes it unsafe.
Here, the centripetal force is greater than the frictional force which makes it unsafe to drive it at that speed.
Answer:
The answer to your question is given below
Explanation:
Since both object A and B were dropped from the same height and the air resistance is negligible, both object A and B will get to the ground at the same time.
From the question, we were told that object A falls through a distance to dA at time t and object B falls through a distance of dB at time 2t.
Remember, both objects must get to the ground at the same time..!
Let the time taken for both objects to get to the ground be t.
Time A = Time B = t
But B falls through time 2t
Therefore,
Time A = Time B = 2t
Height = 1/2gt^2
For A:
Time = 2t
dA = 1/2 x g x (2t)^2
dA = 1/2g x 4t^2
For B
Time = t
dB = 1/2 x g x t^2
Equating dA and dB
dA = dB
1/2g x 4t^2 = 1/2 x g x t^2
Cancel out 1/2, g and t^2
4 = 1
4dA = dB
Divide both side by 4
dA = 1/4 dB