Answer:
Carbon atoms in graphite form alternating single and double bonds.
Explanation:
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
Answer:
-1
Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
, 0.082057 L atm.mol⁻¹K⁻¹
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
<u>Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants) = (2+1)-(2+2) = -1 </u>
<u></u>
Answer: 1.99 x 10²² molecules H2
Explanation:First we will solve for the moles of H2 using Ideal gas law PV= nRT then derive for moles ( n ).
At STP, pressure is equal to 1 atm and Temperature is 273 K.
Convert volume in mL to L:
750 mL x 1 L / 1000 mL
= 0.75 mL
n = PV/ RT
= 1 atm ( 0.75 L ) / 0.0821 L.atm/ mole.K ( 273 K)
= 3.3x10-² moles H2
Convert moles of H2 to atoms using Avogadro's Number.
3.3x10-² moles H2/ 6.022x10²³ atoms H2 / 1 mole H2
= 1.99x10²² atoms H2
Answer: The moles of carbon needed will be, 13.8 moles
Explanation: Moles of = 5.52 mole
Now we have to calculate to moles of carbon.
The given balanced chemical reaction is,
From the balanced chemical reaction, we conclude that
As, 2 mole of react to give 5 moles of carbon
So, 5.52 mole of react to give moles of carbon
Therefore, the moles of carbon needed will be, 13.8 moles