Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
Answer:
PERFECT
YOU GOTTA RIGHT
Step-by-step explanation:
Answer:
Ok, we know that the driving accuracy is of 71%.
Then the first step is to get a spinner that is enumerated from 1 to 100 (in such way that each number is equispaced)
Now, we can mark a section between numbers 1 and 71. (this regio represents the cases where the shot lands in the fairway) and the unmarked region represents the cases where the shot does not land in the fairway.
Now, for each shot, we can spin our spinner next to a fixed pencil, depending on the section of the spinner that is marked by the pencil when the spinner fully stops, we can guess if the shot landed or not in the fairway.
In this way the shot has the region from 1 to 71 (71%) to land in the fairway
and the region from 72 to 100 to not land in the fairway.
If you want to simulate Sorenstam’s performance in a round of golf where she attempts 15 drives, you need to spin the spinner 15 times, and record the oucomes.
X = arcsin (1/2) = 30 degrees