Answer:
Percentage of mass converted to energy = 99.9 %
Explanation:
By far most of the solar system's mass is in the Sun itself: somewhere between 99.8 and 99.9 percent. The rest is split between the planets and their satellites, and the comets and asteroids and the dust and gas surrounding our star. Seen from afar (on the scale of distances between stars) the presence of the solar system would not be obvious. We would simply see a normal-looking star. Perhaps we would pick up the presence of Jupiter, which makes up two thirds or so of the solar system outside of the Sun, by mass.
Answer:
W = 200 J
Explanation:
Work will be equal to the change in kinetic energy
W = ½mv² - 0
W = ½(0.010)200²
W = 200 J
0.975 is correct, to get the answer you divide the length value by 10.
Answer:
a) It is moving at
when reaches the ground.
b) It is moving at
when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:


b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

Solving for initial velocity (when the boulder left the volcano):


Answer:
Part a)

Part b)

Part c)

Part d)
Net force on a closed loop in uniform magnetic field is always ZERO

Explanation:
As we know that force on a current carrying wire is given as

now we have
Part a)
current in side 166 cm and magnetic field is parallel
so we have

here we know that L and B is parallel to each other so

Part b)
For 68.1 cm length wire we have

here we know that


so we have


Part c)
For 151 cm length wire we have

here we know that


so we have


Part d)
Net force on a closed loop in uniform magnetic field is always ZERO
