1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
12

A superconducting solenoid has 3300 turns per meter and can carry a maximum current of 4.1 ka. find the magnetic field strength

in the solenoid.

Physics
2 answers:
jeyben [28]3 years ago
8 0
B = μ x n x I = 1.25 x 10^-6 x 3300 x 4.1 x 10^3
                    =  16.91 T
avanturin [10]3 years ago
7 0
Hope this helps you.

You might be interested in
A chef places an open sack of flour on a kitchen scale. The scale reading of
Novay_Z [31]

Answer:

Explanation:

Given

Initial reading on scale =40 N

So, we can conclude that weight of the sack is 40 N

After this a 10 N force is applied upward on the sack such that the net force becomes (40-10) N downward (because downward force is more)

This net downward force is the resultant of earth graviational pull and the applied upward force.

So, this downward force acts on the machine which inturn applies an upaward force of same magnitude called Normal reaction.

This situation can be diagramatically represented by figure given below  

4 0
3 years ago
Three identical train cars, coupled together, are rolling east at 1.8 m/s . A fourth car traveling east at 4.5 m/s catches up wi
Vedmedyk [2.9K]

Answer:

v = 1.98\ m/s

Explanation:

consider the mass of each train car be m

m₁ = m₂ = m₃ = m

speed of the three identical train

u₁ = u₂ = u₃ = 1.8 m/s

m₄ = m             u₄ = 4.5 m/s

m₅ = m              u₅ = 0 (initial velocity )

final velocity

v₁ = v₂ = v₃ = v₄ = v₅ = v

using conservation of momentum

m₁u₁ + m₂u₂ + m₃u₃ + m₄u₄ + m₅u₅ = m₁v₁ + m₂v₂ + m₃v₃ + m₄v₄ + m₅v₅

m (1.8 + 1.8 + 1.8 +4.5) = 5 m v

v = \dfrac{9.9}{5}

v = 1.98\ m/s

5 0
3 years ago
A charged wire of negligible thickness has length 2L units and has a linear charge density λ. Consider the electric field E-vect
Stels [109]

Answer:

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

Explanation:

Given that

Length= 2L

Linear charge density=λ

Distance= d

K=1/(4πε)

The electric field at point P

E=2K\int_{0}^{L}\dfrac{\lambda }{r^2}dx\ sin\theta

sin\theta =\dfrac{d}{\sqrt{d^2+x^2}}

r^2=d^2+x^2

So

E=2K\lambda d\int_{0}^{L}\dfrac{dx }{(x^2+d^2)^{\frac{3}{2}}}

Now by integrating above equation

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

4 0
3 years ago
Determine whether each of the statements below is true or false, and place it in the appropriate bin. Objects with equal speeds
lisov135 [29]

Objects with equal speeds definitely have equal velocities. -- FALSE.  For equal velocities, they also have to be going in the same direction.

If you are given an object's velocity, you can definitely determine its speed. -- TRUE.  If you know the velocity, then you know both the object's speed and its direction.

If you know the distance an object travels, and the time it takes to do so, you can determine the object's velocity. -- FALSE. Knowing the distance and time, you can figure out the object's speed.  But if you don't also know the direction it's moving, then you can't say what its velocity is.

If an object moves at constant speed, it must also be moving at constant velocity. -- FALSE.  Besides constant speed, it also needs to move in a straight line to have constant velocity.  If it turns, its velocity changes, even if its speed doesn't.

If an object moves at constant velocity, it must also be moving at constant speed. -- TRUE.  Constant velocity means its speed AND its direction are not changing.

Objects with equal velocities definitely have equal speeds. -- TRUE.  If their velocities are equal, then their speeds are equal AND they're moving in the same direction.

After laboring through this one, I'm wondering if there can possibly be any more ways to say the same thing.

7 0
3 years ago
parallel-plate air capacitor is made from two plates 0.070 m square, spaced 6.3 mm apart. What must the potential difference bet
Rom4ik [11]

Answer:

V = 576 V

Explanation:

Given:

- The area of the two plates A = 0.070 m^2

- The space between the two plates d = 6.3 mm

- Te energy density u = 0.037 J /m^3

Find:

- What must the potential difference between the plates V?

Solution:

- The energy density of the capacitor with capacitance C and potential difference V is given as:

                               u = 0.5*ε*E^2

- Where the Electric field strength E between capacitor plates is given by:

                               E = V / d

Hence,

                               u = 0.5*ε*(V/d)^2

Where, ε = 8.854 * 10^-12

                               V^2 = 2*u*d^2 / ε

                               V = d*sqrt ( 2*u / ε )

Plug in values:

                               V = 0.0063*sqrt ( 2 * 0.037 / (8.854 * 10^-12) )

                               V = 576 V

4 0
3 years ago
Other questions:
  • Write at least name of five devices which work under the principles of Physics.
    12·1 answer
  • The second type of wave produced by an earthquake is an S wave (secondary wave), which is a transverse wave. It produces:
    7·2 answers
  • How do you calculate acceleration?
    13·2 answers
  • A sealed container holds 0.020 moles of ideal nitrogen (n2) gas, at a pressure of 1.5 atmospheres and a temperature of 290k. the
    14·1 answer
  • A doctor pushes the plunger of syringe down and then pulls it up to a draw liquid into a syringe? give reason please help me wit
    15·1 answer
  • What is the elevation of Y and Z? Y=3250, Z=2950 Y=3200, Z=2900 Y=3250, Z=2900 Y=3000, Z=2850
    13·1 answer
  • The pressure at the bottom of a glass filled with water (r 5 1 000 kg/m3 ) is P. The water is poured out and the glass is filled
    12·1 answer
  • Which moon phase comes before the phase in this picture?
    11·2 answers
  • 12. In which of the positions shown in the picture, will Joshua have both potential and kinetic energy?​
    7·1 answer
  • A 0.40 kg bead slides on a straight frictionless wire with a velocity of 3.50 cm/s to the right. The
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!