You do 1000 divide it by 10 which equals 100 W
Oxygen. Plants need water sunlight and CO2 to make their food. They get the carbon and the energy from the CO2 and the sun, and they need water as well. Then they release oxygen
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :



u = -21.09 cm
The magnification of the mirror is given by :


m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
Answer:
D. Dylan is incorrect because a 90-degree launch angle results in the largest vertical range
Explanation:
Projectile is the motion of an object thrown into space. When an object is thrown into space, the only force which acts on it is the acceleration due to gravity.
An object thrown into space would reach maximum height (vertical range) if it is launched at an angle of 90 degrees. For maximum horizontal range, the object needs to be launched at an angle of 45 degrees.
Therefore Dylan is incorrect because a 90-degree launch angle results in the largest vertical range