Answer:The highest possible efficiency of this heat engine is 11%
Explanation:
Saturated water temperature at P1, Pressure in Heat addition,
1.1 MPa=185°C +273= 458K
Saturated water temperature at P2, Pressure in Heat rejection,
0.3MPa=133.5°C+ 273=406.5K
The highest possible efficiency of any heat engine is the Carnot efficiency given as
Carnot efficiency, ηmax = 1- (T2/ T1)
1- (406.5K/458K)
1-0.88755=0.112
=11%
0A: accelerating
AB: constant
BC: decelerating
CD:at rest
DE:accelerating
EF: constant
hope this helps
Answer:
t=0.47s
Explanation:
the ball has uniformly accelerated movement due to gravity
Vo=initial speed=4.6m/s
g=gravity=-9.8m/s^2
Vf=final speed=0, the player must wait for the ball to stop. so the final speed will be 0
we can use the following ecuation
T=(Vf-Vo)/g
T=(0-4.6)/-9.8m/s^2
T=0.47s
Answer:
A unit is represented in kWH or Kilowatt Hour. This is the actual electricity or energy used. If you use 1000 Watts or 1 Kilowatt of power for 1 hour then you consume 1 unit or 1 Kilowatt-Hour (kWh) of electricity.
The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.