Let the speed off the walk way be x and speed of the walkway be y
x+y=6....i
x-y=2....ii
adding the above equation we get:
2x=8
thus
x=4 ft/s
and
y=6-4=2 ft/s
thus the speed off the walk way is 4 ft/s
the speed of the moving walkway is 2 ft/s
Answer:
All of the above
Step-by-step explanation:
Also, this is a history, not a maths problem
Yes. Your answer is correct
Answer:
x = 3
Step-by-step explanation:
3x + 2 = 11
-2 -2
3x = 9
÷3 ÷3
x = 3
Assume that the rule connecting height of the candle to time is a linear one. If you do, then we have to find the equation of this line, and then use this equation to predict the height of the candle after 11 hours.
Two points on this line are (6,17.4) and (23, 7.2). The slope is thus
7.2-17.4 -6
m = --------------- = ----------- or -3/5.
23-6 10
Find the equation of the line. I'm going to use the slope-intercept formula:
y = mx + b => 7.2 = (-3/5)(23) + b. Solving for b, b = 21.
Now we know that y = (-3/5)x + 21
Let x=11 to predict the height of the candle at that time.
y = (-3/5)(11) + 21 = 14.4 inches (answer)