.6p + 4.5 =22.5
.6p=18
P=30
The foci of the hyperbola with equation 5y^2-4x^2=20 will be given as follows:
divide each term by 20
(5y^2)/20-(4x^2)/20=20/20
simplifying gives us:
y^2/4-x^2/5=1
This follows the standard form of the hyperbola
(y-k)²/a²-(x-h)²/b²=1
thus
a=2, b=√5 , k=0, h=0
Next we find c, the distance from the center to a focus.
√(a²+b²)
=√(2²+(√5)²)
=√(4+5)
=√9
=3
the focus of the hyperbola is found using formula:
(h.h+k)
substituting our values we get:
(0,3)
The second focus of the hyperbola can be found by subtracting c from k
(h,k-c)
substituting our values we obtain:
(0,-3)
Thus we have two foci
(0,3) and (0,-3)
It's impossible because there are no like terms.
Beginning with the function y = sin x, which would have range from -1 to 1 and period of 2pi:
Vertical compression of 1/2 compresses the range from -1/2 to 1/2
Phase shift of pi/2 to the left
Horizontal stretch to a period of 4pi, as the crests are at -4pi, 0, 4pi
Vertical shift of 1 unit up moves the range to 1/2 to 3/2
So the first choice looks like a good answer.