Answer:
115 m/s, 414 km/hr
Explanation:
There are two forces acting on a skydiver: gravity and air resistance (drag). At terminal velocity, the two forces are equal and opposite.
∑F = ma
D − mg = 0
D = mg
Drag force is defined as:
D = ½ ρ v² C A
where ρ is the fluid density,
v is the velocity,
C is the drag coefficient,
and A is the cross sectional surface area.
Substituting and solving for v:
½ ρ v² C A = mg
v² = 2mg / (ρCA)
v = √(2mg / (ρCA))
We're given values for m and A, and we know the value of g. We need to look up ρ and C.
Density of air depends on pressure and temperature (which vary with elevation), but we can estimate ρ ≈ 1.21 kg/m³.
For a skydiver falling headfirst, C ≈ 0.7.
Substituting all values:
v = √(2 × 80.0 kg × 9.8 m/s² / (1.21 kg/m³ × 0.7 × 0.140 m²))
v = 115 m/s
v = 115 m/s × (1 km / 1000 m) × (3600 s / hr)
v = 414 km/hr
Answer:
C
Explanation:
Because everything on Earth falls at the same speed, the masses of the balls do not matter. Since the acceleration due to gravity is constant, their speeds will both be increasing at the same rate, and therefore the difference in speeds would remain constant until they hit the ground. Hope this helps!
The answer is a rem sleep
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
Answer:
Work done, W = 10195.92 Joules
Explanation:
Given that,
Mass of the crate, m = 170 kg
Distance, d = 10.2 m
The coefficient of friction, 
Let W is the work done by the mover. It is given by in terms of coefficient of friction as :


W = 10195.92 Joules
So, the work done by the mover is 10195.92 Joules. Hence, this is the required solution.