He or she would enjoying doing a job as a caretaker
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
Answer:
4A
Explanation:
According to ohm's law;
E = IRt where;
E is the source voltage = 24volts
I is the total current flowing in the circuit = ?
Rt is the total effective resistance in the circuit.
To find Rt, we will resolve the resistors in parallel first.
Since 6ohms and 12ohms resistors are in parallel, their effective resistance will give;
1/R = 1/6+1/12
1/R= 2+1/12
1/R = 3/12
3R = 12
R = 4ohms.
This resistor will now be in series with the 2.0ohms resistor to finally have;
Rt = 4+2
Rt = 6ohms
From the ohms law formula;
I = E/Rt
I = 24/6
I = 4Amperes
The total current in the circuit is 4A
This same currents will flow in the 2ohms resistor since same current flows in a series connected resistors.
Answer:
The reading on the ammeter A₁ , should be 2 Amp.
Explanation:
Given circuit shows all the bulbs are connected in parallel and ammeter A(T) at the source reads 6 Amp.
So, as the bulbs are in parallel connection, the current gets divided equal to each bulb.
so, the reading on the ammeter A₁ , should be 2 Amp.
But it will show 6 Amp, which is three times of the required value(2 amp).
This is because there was a mistake while making the circuit connections.
Instead of making connections as given circuit, the connections were made different as uploaded circuit.
Instead of connecting ammeter A₁ to only one bulb, it is connected to all the bulbs.
To correct this, remove the wire connecting ammeter and the second bulb.
And connect the second bulb directly to the switch.