Answer:
Grow plants where little light is available
Explanation:
The plants need the ultraviolet rays in order to be able to survive and develop. The need mainly comes from the dependence of these rays for production of food, in a process known as photosynthesis. The plants are producers, thus they create their own food. In order to be able to do that they are using the ultraviolet rays, as well as water, and carbon dioxide. By combining them, the plants manage to create glucose for them, and that is their food source. The plants that are kept at places where there's not enough light are often exposed to ultraviolet rays so that they are able to perform the process of photosynthesis and grow properly.
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 

5.625 hours and it is 450 divided by 80
Have A Good Day
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.