I'm giving you a general formula , its called ohm law it states that <span>electric current is proportional to voltage and inversely proportional to resistance
if V=voltage associated with the battery
R=resistance , I=current then
</span>

<span>
</span>
Explanation:
u=54 km/h
54*5/18=15 m/s
v=0m/s
t=?
acceleration=-0.5m/s^2
we know that a=v-u/t
so,
t=v-u/a
t=15-0/0.5
=15/0.5
=30
therefore, the time is 30 second
Hope this answer helps you..
<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
Answer;
B. Fluorescent lamps operate at a higher temperature than incandescent lamps.
Explanation;
-A fluorescent lamp, is a type of electric light (lamp) that uses ultraviolet emitted by mercury vapor to excite a phosphor, which emits visible light.
-A fluorescent lamp produces less heat, thus, it is much more efficient. A fluorescent bulb can produce between 50 and 100 lumens per watt. This makes fluorescent bulbs four to six times more efficient than incandescent bulbs.
-Fluorescent lamps operate best around room temperature. At much lower or higher temperatures, efficacy decreases.
Answer:
the answer is B
Explanation:
speed is the rate at which the distance covered changes or the distance divided by the time taken.
scalar is always positive.