Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa
Well, the relationship between the net force and mass and acceleration of an object are directly related, as per the equation - Fnet = ma.
Thus the solution is A. As the net force of an object decreases, the object's acceleration also decreases, mass is kept constant.
a centrifugal clutch works, as the name suggests, through centrifugal force. ... The rotation of the hub forces the shoes or flyweights outwards until they come into contact with the clutch drum, the friction material transmits the torque from the flyweights to the drum. The drive is then connected