Energy divided by time equals power.
Rate and Thanks!
Answer: The last part of the question has some details missing which is ; (Assume that the molecule's velocity is perpendicular to the two sides that it strikes.) molecule v=482 m/s molecule momentum=2.56 x 10^(-23)
Explanation:
- The momentum of the molecule is 2.56 x 10^(-23) .
- Particle hits the wall and bounces.
- Momentum is reversed. Change in momentum = impulse
- This is Force x time.
- Momentum change happens at a wall after each trip.
- time required = distance /speed
- Average force = impulse / time
- = 2 x 482 x 2.56 x 10^(-23) / (0.17 x 2)
- = 7.76 x 10^20N, is the average force the molecule exerts on one of the walls of the container.
Answer:
The total work on the ball is 36.25 Joules
Explanation:
There is an important principle on classical mechanics that is the work-energy principle it states that the total work on an object is equal the change on its kinetic energy, mathematically expressed as:
(1)
With W net the total work, Kf the final kinetic energy and Ki the initial kinetic energy. We're going to use this principle to calculate the total work on the baseball by the force exerted by the bat.
Kinetic energy is the energy related with the movement of an object and every classical object with velocity has some kinetic energy, it is defined as:

With m the mass of the object and v its velocity, knowing this we can use on:
In our case vf is the velocity just after the hit and vi the velocity just before the hit. For an average baseball its mass is 145g that is 0.145 kg, then

The problem describes the relationship of "bulb a" and "bulb b" to be in connected in series. When the switch is open then no current can flow, on the other hand, when it is closed, current will pass through.
When only "bulb a" is connected to the battery then more current is flowing to "bulb a" causing it to be bright.
Closing the switch would mean that "bulb b" is already included in the circuit and the battery will push small current to flow around the whole circuit. The more bulbs are connected, the harder for the current to flow because the resistance will be very high.
So the light of "bulb a" will be dimmer.