Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
6.86 N
Explanation:
Applying,
F = mg............... Equation 1
Where F = Force exerted by gravity on the mass, m = mass, g = acceleration due to gravity
Note: The Force exerted by gravity on the mass is thesame as the weight of the body.
From the question,
Given: m = 700 g = (700/1000) = 0.7 kg
Constant: g = 9.8 m/s²
Substitute these values into equation 1
F = 9.8(0.7)
F = 6.86 N
1. False
2.False
3.False
4.True
5. True
6. False
7.True
8.False
9. True
10. False
"The process used by scientific investigations is the scientific method. This involves making an observation, stating a question, formulating a hypothesis, conducting an experiment and analyzing the results to form a conclusion. "
I would most likely go with B. but im not 100% sure
Answer:
<h2>1116.9 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 438 × 2.55
We have the final answer as
<h3>1116.9 N</h3>
Hope this helps you