Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
Answer:
I think its B
Explanation:
because "This means that when you rubbed the plastic comb along your hair, your hair resisted the movement of the comb and slowed it down. The friction between two surfaces can cause electrons to be transferred from one surface to the other."
Answer:
So the minimum force is
32.2Newton
Explanation:
To solve for the minimum force, let us assume it to be F (N)
So
F=mgsinA
But
=>>>> coefficient of static friction x (F + mgcosA
=>3 x 9.8 x sin35 = 0.3 x (F + 3 x 9.8 x cos35)
So making F subject of formula
F + 24.0 = 56.2
F = 32.2N
ANSWER - (1) are constantly moving (2) have volume (3) have intermolecular forces (4) undergo perfectly elastic collisions (5) have an average kinetic energy proportional to the ideal gas’s absolute temperature