Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer:
The horizontally applied force = 2360 N
Explanation:
<em>Force:</em> Force can be defined as the product of mass and acceleration. the S.I unit of force is Newton (N)
Fh = Fr + ma......... Equation 1
Where Fh = horizontally applied force, Fr = friction force, m = mass of the crate, a = acceleration of the crate.
<em>Given: m = 400 kg, a = 1 m/s²</em>
Fr = 1/2 W, W = mg ⇒W = 400×9.8 = 3920 N
∴Fr = 1/2(3920), Fr = 1960 N
Substituting these values into equation 1
Fh = 1960 + 400×1
Fh = 1960 + 400
Fh = 2360 N
Therefore the horizontally applied force = 2360 N
<span>Matching the boundary with its characteristics
1. Convergent - C. Compression
2. Divergent - B. Along ocean ridges
3. Transform - A. Along strike-slip faults
The compression that occur in the convergent boundary causes the reverse fault in the earth crust.
So in the divergent boundary two crust plates move apart causing a normal fault along the ocean ridges.
The faults in the transform boundary happens at the place where plates slide laterally.</span>
Given: Mass m = 60 Kg
Weight W = 96 N
Required: Acceleration due to gravity, g = ?
Formula: W = mg
g = W/g
g = 96 Kg.m/s²/60 Kg (note: this is the derive unit for Newton "N")
g = 1.6 m/s²
Explanation:
The particle will be at rest when its velocity
is equal to zero. Recall that the velocity is simply the derivative of the position
with respect to time:

Since 
then

Solving for t, we find that the particle will be at rest at
