Answer:
-320 μJ.
Explanation:
Consider a point with an electrical charge of
. Assume that
is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:
.
Keep in mind that since both
and
might not be positive, the size of the electrical potential energy might not be positive, either.
For this point charge,
; (that's -8.0 microjoules, which equals to
)
.
Hence its electrical potential energy:
.
Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this
negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.
interesting question.
how much fuel to hover over one place ?
The Foucault pendulum is a v v v long pendulum which can show the eart's rotation over time if the pend bob motion is tracked and recorded
Answer:

Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force on the object
m is its mass
a is its acceleration
In this problem:
F = 40 N is the force on the object
m = 2 kg is its mass
Therefore, the acceleration of the object is

Intensity of sunlight at given position is defined as power received per unit area
so here we can say

area on which photons are received is given as

now we can find the power received due to sunlight



now we can say this power is due to photons that strikes on surface of earth
so here we can say

given here that





so it will strike 2.47 * 10^18 photons on given area per second
The astronauts hearing the rocket landing is inaccurate. Sound waves can’t travel through a vacuum, meaning a place where there are no air particles. They are mechanical waves and require a medium to travel through. So, because there is no air in space, you can’t hear anything.