Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))
Firstly, the density of any substance is represented by the mass (amount of matter) as divided by the volume(amount of space). According to external websites, the mass of a penny is 2.5 grams.However, the volume of a penny is .35cm to the power of 3 (due to the thickness of the penny being extremely minimal.Thus the amount of density is extremely little). Therefore, the density of a penny is 0.875 g/cm cubed (dimensional analysis).As for an invention that could be used, that is possible with the usage of a series of measurements that can both calculate mass and volume and directly allocate that to attain density
Answer:
Since this is old, im just gonna get these points, don't wan't them to go to waste lm.ao
Explanation:
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
Atoms can be the source of both nuclear and chemical energy. Nuclear energy involves the atom's nucleus; chemical energy involves the atom's electrons—subatomic particles that surround the nucleus.