Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
Answer : The value of new volume is, 50.0 mL
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure at STP = 1 atm
= final pressure = 4.00 atm
= initial volume at STP = 200.0 mL
= final volume = ?
Now put all the given values in the above equation, we get:


Therefore, the value of new volume is, 50.0 mL
<span>1. the pressure of a gas over a solvent is increase
</span> Gas solubility decreases"<span>
2. the partial pressure of an anesthetic gas is increased
</span> " gas solubility does not change"<span>
3. air in blood a diver descends 10 M and pressure increases by 1 atm
</span> Gas solubility decreases"<span>
4. the temp is increase
</span>"gas solubility increases"<span>
5. O2 the temp of a body of water rises.
</span>"gas solubility increases"
The temperature of a reaction causes its rate of reaction to increase because the heat inputted into the solution excites the electrons that make up the solution, therefore making them move faster, colliding more often with other molecules of the solution. This increase in collision rates causes the rate of reaction to increase.
I believe the answer is A