Answer:
Either 2.4 boxes or 6
Step-by-step explanation:
10% of 40 is 4
60% of 40 is 24
Either 2.4 boxes or 6
Answer:
0.264 mm
Step-by-step explanation:
Number of sheets = 1000
Thickness of entire sheet = 264 mm
The thickness of the sheet is :
Thickness of entire sheet / number of sheets
264 mm / 1000
= 0.264 mm
Let
A (1,6)------> location <span>brianna's house on a map
B </span>(5,3)------> location Jordan's house on a map
we know that
One possible path from brianna's house to jordan's house it's a straight line ( <span>the shortest distance)</span>
using a graph tool
see the attached figure
find the distance points AB
d=√[(y2-y1)²+(x2-x1)²]-----> d=√[(3-6)²+(5-1)²]----> d=√[3²+4²]
d=√25----> d=25 units
the distance from brianna's house to jordan's house is 25 units
Answer:
The y-intercept of the line would be (C) 8
Step-by-step explanation:
The slope of the line with the equation y = -3x - 5 is -3. When figuring out a slope perpendicular to another line you would use the negative reciprocal of the slope which would lead to the slope of the line to be 1/3.
We know it passes through the point (-3,7), substituting x and y, we would then get our new equation,
.
Solve the equation by multiplying -3 with 1/3 and the product would be -1. Add negative one on both sides and you would get 8 = b.
Answer:
a) ![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
b) ![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
c) ![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
d) ![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
e) ![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
Step-by-step explanation:
Let define some notation:
[L]= represent longitude , [T] =represent time
And we have defined:
s(t) a position function


Part a
If we do the dimensional analysis for v we got:
![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
Part b
For the acceleration we can use the result obtained from part a and we got:
![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
Part c
From definition if we do the integral of the velocity respect to t we got the position:

And the dimensional analysis for the position is:
![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
Part d
The integral for the acceleration respect to the time is the velocity:

And the dimensional analysis for the position is:
![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
Part e
If we take the derivate respect to the acceleration and we want to find the dimensional analysis for this case we got:
![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)