The answer
the main formula is given by
Q=mSDT
where m= mass
s= specific heat
DT= <span>change in temperature
so Q = 50.89 x 1.8x 4.11 = 376.48</span>
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
How is the hydrosphere changing? Human contributions to greenhouse gases in the atmosphere are warming the earth's surface - a process which is projected to increase evaporation of surface water and accelerate the hydrologic cycle. In turn, a warmer atmosphere can hold more water vapor.
Ok then! So mitosis is when a cell splits and doesn't lose/gain any chromosomes. In meiosis the chromosomes join and split evenly at the cell's "poles". Chromosomes will be lost evenly through this process.