Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
The balanced combustion reaction of propane, C₃H₈, is
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
Molar mass of propane: 44 g/mol
Moles of propane = 42 g * (1 mol/44g) = 0.9545 mol propane
Molar mass of oxygen: 32 g/mol
Moles of oxygen = 115 g * (1 mol/32 g) = 3.594 mol oxygen
Moles of oxygen needed to completely react propane:
0.9545 mol propane * (5 mol O₂/1 mol propane) = 4.7725 mol oxygen
Since the available oxygen is only 3.594 moles and propane needs 4.7725 moles, that means oxygen is our limiting reactant. We base the amount of water produced here.
Molar mass of water: 18 g/mol
Mass of water produced = 3.594 mol O₂ * (4 mol H₂O/5 mol O₂) * (18 g/mol)
Mass of water produced = 258.768 grams
When E° cell is an electrochemical cell which comprises of two half cells.
So,
when we have the balanced equation of this half cell :
Al3+(aq) + 3e- → Al(s) and E°1 = -1.66 V
and we have also this balanced equation of this half cell :
Ag+(aq) + e- → Ag(s) and E°2 = 0.8 V
so, we can get E° in Al(s) + 3Ag (aq) → Al3+(aq) + 3Ag(s)
when E° = E°2 - E°1
∴E° =0.8 - (-1.66)
= 2.46 V
∴ the correct answer is 2.46 V
Answer:
Covalent Bonds
Explanation:
INTERmolecular forces are those that exist between molecules, so you can think of it liek international things taking place between countries. As you are aware, dipoles exist across an entire molecule, so for 2 dipoles to interact, there needs to be 2 molecules. Van der Waals forces also take place between molecules when there is an uneven distribution of electrons across a molecule, causing a temporary weak dipole. Hydrogen bonding is similar to dipole-dipole forces, but only happen when there is a hydrogen interacting with an atom on another molecule that has a lone pair of electrons.
Covalent bonds, however, are INTRAmolecular, meaning they are present within a molecule. Covalent bonds are the bonds that exist when two atoms, within the same molecule, share electrons so both can have a stable electron configuration.
Hope I helped! xx
Answer:
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Explanation:
Hello there!
In this case, since the integrated rate law for a second-order reaction is:
![[SO_3]=\frac{[SO_3]_0}{1+kt[SO_3]_0}](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B%5BSO_3%5D_0%7D%7B1%2Bkt%5BSO_3%5D_0%7D)
Thus, we plug in the initial concentration, rate constant and elapsed time to obtain:
![[SO_3]=\frac{1.44M}{1+14.1M^{-1}s^{-1}*0.240s*1.44M}\\\\](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B1.44M%7D%7B1%2B14.1M%5E%7B-1%7Ds%5E%7B-1%7D%2A0.240s%2A1.44M%7D%5C%5C%5C%5C)
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Best regards!