Answer : The value of
for the reaction is, -135.2 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The formation of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

We are dividing the reaction 1, 2 and 3 and reversing reaction 3 and then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the value of
for the reaction is, -135.2 kJ
Answer:
99.24%.
Explanation:
- NaCl reacted with AgNO₃ as in the balanced equation:
<em>NaCl + AgNO₃ → AgCl(↓) + NaNO₃,</em>
1.0 mol of NaCl reacts with 1.0 mol of AgNO₃ to produce 1.0 mol of AgCl and 1.0 mol of NaNO₃.
- We need to calculate the no. of moles of AgCl produced:
no. of moles of AgCl = mass/molar mass = (2.044 g)/(143.32 g/mol) = 0.0143 mol.
- Now, we can calculate the no. of moles of NaCl that can precipitated as AgCl (0.0143 mol), these moles represents the no. of moles of pure NaCl in the sample:
<em>using cross multiplication:</em>
1.0 mol of NaCl produce → 1.0 mol of AgCl, from the stichiometry.
∴ 0.0143 mol of NaCl produce → 0.0143 mol of AgCl.
- Now, we can get the mass of puree NaCl in the sample:
mass of pure NaCl = (no. of moles of pure NaCl)(molar mass of NaCl) = (0.0143 mol)(58.44 g/mol) = 0.8357 g.
∴ The percentage of NaCl in the impure sample = [(mass of pure NaCl)/(mass of the impure sample)] x 100 = [(0.8357 g)/(0.8421 g)] x 100 = 99.24%.
<span>this is a limiting reagent problem.
first, balance the equation
4Na+ O2 ---> 2Na2O
use both the mass of Na and mass of O2 to figure out how much possible Na2O you could make.
start with Na and go to grams of Na2O
55.3 gNa x (1molNa/23.0gNa) x (2 molNa2O/4 molNa) x (62.0gNa2O/1molNa2O) = 75.5 gNa2O
do the same with O2
64.3 gO2 x (1 molO2/32.0gO2) x (2 molNa2O/1 mol O2) x (62.0gNa2O/1molNa2O) = 249.2 g Na2O
now you must pick the least amount of Na2O for the one that you actually get in the reaction. This is because you have to have both reacts still present for a reaction to occur. So after the Na runs out when it makes 75.5 gNa2O with O2, the reaction stops.
So, the mass of sodium oxide is
75.5 g</span>
O they did not
at least thats what my substitute teacher said
Answer:
The boiling point is the temperature at which the vapor pressure equals the pressure of gas.
The normal boiling point is the temperature at which the vapor pressure equals one atmosphere
Explanation: