Answer:
See Below
Explanation:
Okay, I thinkkk what it is asking by what you summarzied for me issss:
They split the total time into four quarters. They then took (for the first quarter) the start time. Then when the first quarter ends and the second quarter starts is the "end" time.
They then subtract the start time of the second quarter from the end time of the first quarter.
I hope this helps, good luck! :D
Answer:
The Hydrostatic force is 
The location of pressure center is
Explanation:
From the question we are told that
The height of the gate is 
The weight of the gate is 
The height of the water is 
The density of water is 
Note used
for height of water and height of gate immersed by water since both have the same value
The area of the gate immersed in water is mathematically represented as

substituting values


The hydrostatic force is mathematically represented as

Where


So


The center of pressure is mathematically represented as

Where
is the moment of inertia of the gate which mathematically represented as

The
is the height of gate immersed in water
Thus


Answer:
15009
Explanation:
PE = mgh
PE = 61.2(9.81)(10 * 2.50)
PE = 15009.3
Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m