ANSWER
T₂ = 10.19N
EXPLANATION
Given:
• The mass of the ball, m = 1.8kg
First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,
In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

Solve for T₁,

Now, we use the second equation to find the tension in the horizontal string,

Solve for T₂,

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.
If its not Distance traveled then its energy
Answer:
(a)106.4C
b)0.5676mm
Explanation:
(a)To get the charge that have passed through the starter then The current will be multiplied by the duration
I= current
t= time taken
Q= required charge
Q= I*t = 140*0.760 = 106.C
(b) b. How far does an electron travel along the wire while the starter motor is on?(mm)
diameter of the conductor is 4.20 mm
But Radius= diameter/2= 4.20/2=
The radius of the conductor is 2.1mm, then if we convert to metre for consistency same then
radius of the conductor is 0.0021m.
We can now calculate the area of the conductor which is
A = π*r^2
= π*(0.0021)^2 = 13.85*10^-6 m^2
We can proceed to calculate the current density below
J = 140/13.85*10^-6 = 10108303A/m
According to the listed reference:
Where e= 1.6*10^-19
n= 8.46*10^28
Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 ) =0.0007468m/s=0 .7468 mm/s
Therefore , the distance traveled is:
x = v*t = 0.7468 * 0.760 = 0.5676mm
Explanation:
It is based upon the fact that " The light travels faster then sound." As the speed of light is faster then the speed of sound, light travels 300,000 km per second and sound travels 1192 km per hour. That is why we observe the lightening first and hear the the sound of thunder later.
You can do this experiment by yourself. Once you see the lightening start counting the seconds until you hear the sound of thunder.Then divide the seconds by 5, you will find out how many miles away the lightening strike was.