Answer:
Explanation:
The variables we know and are given are:
time, t = 20s
Charge, Q = 3x1-^-6 electrons, which is just 3x10^-6C (C stands for Coulombs, which is the unit for Charge)
We need to find the current, I, and since we know Q and t we can substitute these values into the given equation:
I=Q/t (which if you look at what the RHS is saying, its Charge over time, or more literally means the amount of charge passing a point over a period of time)
If we substitute these values, we will get I as:
I = Q / t
I = 3x10^-6 / 20
I = 1.5x10^-7 A
Hope this helps!
Answer:
ya it is , affected!okay I think this
Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
Answer:
The correct option is a
Explanation:
The alpha particle has the lowest penetrating power of the trio of alpha, beta and gamma particles and can be stopped by a sheet of paper and hence cannot penetrate a human skin. Beta particle has a higher penetrating power than alpha particle (some of it penetrates the human skin and some do not) while the gamma particle has the highest penetrating power (with all of it penetrating the human skin).
From the above description, it can be deduced that the alpha particle will stay and interact with the hand (because of its low penetrating power) as the remaining particles move through the skin.