Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Answer:
Period of brightness variation and luminosity.
Explanation:
The Cepheid variables are used as distance indicators. This requires estimation of periods and (usually) intensity-mean magnitudes in order to establish a period—apparent luminosity relation. It is particularly important for the techniques employed to be as accurate and efficient as possible.
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Since power = work done/time, 60= work done/120, work done = 120*60 = 7200. So,work done = 7200N (Newton).
I'm not sure if you're supposed to convert the seconds to time.