<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Answer:
c) A solid has a definite shape
Explanation:
Only solids have definite shape. Liquids acquire the shape of the container and gases have molecules that move randomly .Gases turn into plasma when
heat energy is added to it.
The list of options to answer this question is:
A.kinectic energy is transformed into thermal energy.
B.electrical energy is transformed into potential energy.
C.potential energy is transformed into kinectic energy.
D.mechanical energy is transformed into chemical energy.
The answer is the option A. A.kinectic energy is transformed into thermal energy.
As you know energy cannot be lost but transformed.
When friction force acts over the tyres it increases the speed of the particles in the tyres which is thermal energy, this thermal energy increase comes from kinetic energy loss.
Answer:
2H2O2-----2H2O+O2
Explanation:
This is because theres the same number of atoms of each element on both sides
Answer:
The net ionic equation is
C6H5COOH+ CN-= C6H5COO- + HCN
Explanation:
From the ionic equation
C6H5COOH + Na+ + CN- = C6H5COO- + Na+ + HCN
Only sodium is the spectator ion, so it cancels out, since C6H5COOH and HCN do not ionize completely they are left undissociated