<span>Answer: 0.00649M
The question is incomplete,
</span>
<span>You are told that the first ionization of the sulfuric acid is complete and the second ionization of the sulfuric acid has a constant Ka₂ = 0.012
</span>
<span>
With that you can solve the question following these steps"
</span>
<span>1) First ionization:
</span>
<span>
H₂SO₄(aq) --> H⁺ (aq) + HSO₄⁻ (aq)
Under the fully ionization assumption the concentration of HSO4- is the same of the acid = 0.01 M
2) Second ionization
</span>
<span>HSO₄⁻ (aq) ⇄ H⁺ + SO₄²⁻ with a Ka₂ = 0.012
</span>
<span>Do the mass balance:
</span>
<span><span> HSO₄⁻ (aq) H⁺ SO₄²⁻</span>
</span>
<span /><span /><span> 0.01 M - x x x
</span><span>Ka₂ = [H⁺] [SO₄²⁻] / [HSO₄⁻]</span>
<span /><span>
=> Ka₂ = (x²) / (0.01 - x) = 0.012
</span><span />
<span>3) Solve the equation:
</span><span>x² = 0.012(0.01 - x) = 0.00012 - 0.012x</span>
<span /><span>
x² + 0.012x - 0.0012 = 0
</span><span />
<span>Using the quadratic formula: x = 0.00649
</span><span />
<span>So, the requested concentratioN is [SO₄²⁻] = 0.00649M</span>
Answer:
- <u><em>beta decay</em></u>
Explanation:
The <em>process</em> is represented by the nuclear equation:
→ 
Where:
- n represents a neutron,
- p represents a proton, and
- β represents an electron.
The superscripts to the leff of each symbol is the mass number (number of protons and neutrons), and the subscript to the left means the atomic number (number of protons).
Then, in this process a neutron is being transformed into a proton by the emssion of an electron (from inside the nucleus of the atom).
This electron is named beta (β) particle, and the process is called <u><em>beta decay</em></u>, because the neutron is changing into other subatomic particles.
Answer:
option A
I think so good night sweet dreams
The atomic number represents the number of protons in an atom's nucleus. In an uncharged atom, the number of protons is always equal to the number of electrons. For example, carbon atoms include six protons and six electrons, so carbon's atomic number is 6.