Answer:

Explanation:
The breakdown reaction of ozone is as follows




It can be seen that 2 moles of ozone is required in the complete cycle
So for 10 cycles, 20 moles of ozone is required
m = Mass of
= 15.5 g
M = Molar mass of
= 104.46 g/mol
P = Pressure = 24.5 mmHg
T = Temperature = 232 K
R = Gas constant = 
Number of moles is given by


From ideal gas law we have

For 20 cycles of the reaction the volume of the ozone is
.
Answer:
D.Lowering the temperature is the best option.
Explanation:
The value of equilibrium constants aren't changed with change in the pressure or concentrations of reactants and products in equilibrium. The only thing that changes the value of equilibrium constant is a change of temperature.
In the reaction below for example;
A + B <==>C+D
If you have moved the position of the equilibrium to the right (and so increased the amount of C and D), why hasn't the equilibrium constant increased?
Let's assume that the equilibrium constant mustn't change if you decrease the concentration of C - because equilibrium constants are constant at constant temperature. Why does the position of equilibrium move as it does?
If you decrease the concentration or pressure of C, the top of the Kc expression gets smaller. That would change the value of Kc. In order for that not to happen, the concentrations of C and D will have to increase again, and those of A and B must decrease. That happens until a new balance is reached when the value of the equilibrium constant expression reverts to what it was before.
Answer:
transfer pipet that had markings every 0.1 mL.
Explanation:
Answer:
Temperature
Explanation:
Kinetic energy of gass molecules is directly propotional to the temperature.