Answer:
V₂ = 111.3 mL
Explanation:
Given data:
Initial volume of gas = 50.0 mL
Initial temperature = standard = 273.15 K
Final volume = ?
Final temperature = 335 °C (335+273.15 = 608.15 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 50.0 mL ×608.15 K / 273.15 k
V₂ = 30407.5 mL.K / 273.15 K
V₂ = 111.3 mL
Answer:
The volume of the gas will not change because the metal can is limiting it
Explanation:
Insead, Gay-Lussac's law tells us that the pressure will increase with the temprature unil the can eventually explodes, then allowing the volume to rapidly increase.
Answer:
a) increase exponentially.
Explanation:
The vapor pressure is depend only on temperature.
The vapor pressure of liquid does not depend upon amount of liquid. For example whether the liquid is 50 g or 30 g its vapor pressure will remain same according to the temperature.
The temperature and vapor pressure have exponential relationship. As the temperature of liquid increases its vapor pressure also goes to increase. When the temperature of liquid goes to decrease its vapor pressure also decreases.
The change in vapor pressure of substance when temperature changes is given as,
ln P₂/P₁ = ΔH(va)/R (1/T₁ - 1/T₂)