Answer:
76.03 °C.
Explanation:
Equation:
C2H5OH(l) --> C2H5OH(g)
ΔHvaporization = ΔH(products) - ΔH (reactants)
= (-235.1 kJ/mol) - (-277.7 kK/mol)
= 42.6 kJ/mol.
ΔSvaporization = ΔS(products) - ΔS(reactants)
= 282.6 J/K.mol - 160.6 J/K.mol
= 122 J/K.mol
= 0.122 kJ/K.mol
Using gibbs free energy equation,
ΔG = ΔH - TΔS
ΔG = 0,
T = ΔH/ΔS
T = 42.6/0.122
= 349.18 K.
Coverting Kelvin to °C,
= 349.18 - 273.15
= 76.03 °C.
When baking powder is added to a cake, the acid base reaction it undergoes with the acidic butter produces the carbon dioxide that makes the cake rise.
the environment is Healthy
Answer: Benzene is less reactive than methylbenzoate and more reactive than Nitrobenzene
Explanation:
This is because the methyl group on the benzene ring is an electron donating group leading to the activation of the ring and subsequently leading to more canonical resonance structure at the intermediate stage of the reaction enhancing the faster reactivity
However for the Nitrobenzene the nitro group is an electron withdrawing group leading to a slower activation and less resonance canonical structure at the reaction intermediate leading to a slower reaction than the reaction of benzene without the nitro group
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205