The time lapse between when the bat emits the sound and when it hears the echo is 0.05 s.
From the question given above, the following data were obtained:
Velocity of sound (v) = 343 m/s
Distance (x) = 8.42 m
Time (t) =?
We can obtain obtained the time as illustrated below:
v = 2x / t
343 = 2 × 8.42 / t
343 = 16.84 / t
Cross multiply
343 × t = 16.84
Divide both side by 343
t = 16.84/343
t = 0.05 s
Thus, the time between when the bat emits the sound and when it hears the echo is 0.05 s.
<h3>
How does a bat know how far away something is?</h3>
A bat emits a sound wave and carefully listens to the echoes that return to it. The returning information is processed by the bat's brain in the same way that we processed our shouting sound with a stopwatch and calculator. The bat's brain determines the distance of an object by measuring how long it takes for a noise to return.
Learn more about time elapses between when the bat emits the sound :
<u>brainly.com/question/16931690</u>
#SPJ4
Correction question:
A bat emits a sonar sound wave (343 m/s) that bounces off a mosquito 8.42 m away. How much time elapses between when the bat emits the sound and when it hears the echo? (Unit = s)
Answer:
70.6 mph
Explanation:
Car A mass= 1515 lb
Car B mass=1125 lb
Speed of car B is 46 miles/h
Distance before locking, d=19.5 ft
Coefficient of kinetic friction is 0.75
Initial momentum of car B=mv where m is mass and v is velocity in ft/s
46 mph*1.46667=67.4666668 ft/s
Initial momentum of car A is given by
where
is velocity of A
Taking East as positive and west as negative then the sum of initial momentum is
The common velocity is represented as
hence after collision, the final momentum is
From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence
The acceleration of two cars
From kinematic equation
hence
Substituting the value of
in equation
radio waves,X-rays,
Explanation:
In order from highest to lowest energy, the sections of the EM spectrum are named: gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves. Microwaves (like the ones used in microwave ovens) are a subsection of the radio wave segment of the EM spectrum.
The angular momentum of an object is equal to the product of its moment of inertia and angular velocity.
L = Iω
I = 1/2 MR²
I = 1/2 x 13 x (0.2)
I = 1.3
ω = 2π/t
ω = 2π/0.3
ω = 20.9
L = 1.3 x 20.9
= 27.2 kgm²/s
A pendulum is an object hung from a fixed point that swings back and forth under the action of gravity. In the example of the playground swing, the swing is supported by chains that are attached to fixed points at the top of the swing set. When the swing is raised and released, it will move freely back and forth due to the force of gravity on it. The swing continues moving back and forth without any extra outside help until friction (between the air and the swing and between the chains and the attachment points) slows it down and eventually stops it.