1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
5

un tren parte de un punto kilometrico 0 alas 00 horas despues de rrecorrer 49 kilometros en untiempo 0.5 horas se averia porloqu

e deve detenerse los empleados de mantenimiento arreglan la aberia en 1 hora en ese momento el tren reanuda la marcha y llega alas 23.30 horas ala estacion de destino situada en el puto kilometrico 25
Physics
1 answer:
Leona [35]3 years ago
4 0
The one one of the times
You might be interested in
The speed of a box traveling on a horizontal friction surface changes from vi = 13 m/s to vf = 11.5 m/s in a distance of d = 8.5
KiRa [710]

Answer:

0.68 s

Explanation:

We are given that

Initial velocity of box=u=13m/s

Final velocity of box=v=11.5 m/s

Distance=d=8.5 m

We have to find the time taken by box to slow by this amount.

We know that

v^2-u^2=2as

Substitute the values

(11.5)^2-(13)^2=2a(8.5)

132.25-169=17a

-36.75=17a

a=\frac{-36.75}{17}=-2.2m/s^2

We know that

Acceleration=a=\frac{v-u}{t}

Substitute the values

-2.2=\frac{11.5-13}{t}

-2.2=\frac{-1.5}{t}

t=\frac{1.5}{2.2}=0.68 s

Hence, the time taken by box to slow by this amount=0.68 s

8 0
3 years ago
A 5.0 kg block hangs from the ceiling by a mass-less rope. A Second block with a mass of 10.0 kg is attached to the first block
gayaneshka [121]

The tension in the first and second rope are; 147 Newton and 98 Newton respectively.

Given the data in the question

  • Mass of first block; m_1 = 5.0kg
  • Mass of second block, m_2 =10kg
  • Tension on first rope; T_1 =\ ?
  • Tension on second rope; T_2 =\ ?

To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

F = m\ *\ a

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity  g = 9.8m/s^2 )

For the First Rope

Total mass hanging on it; m_T = m_1 + m_2 = 5.0kg + 10.0kg = 15.0kg

So Tension of the rope;

F = m\ * \ g\\\\F = 15.0kg \ * 9.8m/s^2\\\\F = 147 kg.m/s^2\\\\F = 147N

Therefore, the tension in the first rope is 147 Newton

For the Second Rope

Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

F = m\ * \ g\\\\F = 10.0kg \ * 9.8m/s^2\\\\F = 98 kg.m/s^2\\\\F = 98N

Therefore, the tension in the second rope is 98 Newton

Learn More, brainly.com/question/18288215

4 0
2 years ago
Read 2 more answers
Does the horizontal distance d travelled by the ball depend on the height of release? If it does depend on the height, what is t
elena-s [515]

Answer:

Explanation:

Yes , the horizontal distance travelled by the ball will depend upon the height of release .

When a ball is thrown at some angle from a height , it has two components , the vertical component and horizontal component . The ball goes in horizontal direction due to its horizontal component . Its vertical component has no role to play .  But the horizontal range covered by the body thrown

depends upon the duration of time in which it remains in air . The longer it remains in air , the greater distance it can cover horizontally .

Horizontal distance covered = t x horizontal velocity

If V be the velocity of throw and Vx be its horizontal component

Horizontal distance covered = t x Vx

Now t depends upon the height . If height rises , time of fall will increase so horizontal distance covered will increase .

If h be the height from which the body is thrown , Vy be the vertical upward component of initial velocity

from the relation

s = ut + 1/2 at²

h = - Vy t  + 1/2 at²

As h increases , t will increase and therefore horizontal distance covered will increase. If the ball has only  horizontal velocity initially , Vy = 0

h = 1/2 gt²

t = \sqrt{\frac{2h}{g} }

Horizontal distance covered  = t x Vx

= \sqrt{\frac{2h}{g} } \times  V_x

From this expression also

Horizontal distance covered is proportional to \sqrt{h} .

7 0
3 years ago
Consider an elevator with a table and a book on top of the table. The mass of the table is 10kg and the mass of the book is 2kg.
Step2247 [10]

Newton's second law allows us to find the force of the block on the table is 126 N

Newton's second law says that the net force is proportional to the product of the mass and the acceleration of the body

                Σ F = m a

Where the bold letters indicate vectors, m is the mass and the acceleration of the body

A free body diagram is a diagram where the forces are represented without the details of the bodies, in the attached we can see a free body diagram of the system.

Let's start by finding the acceleration of the elevator with kinematics  

                 v = v₀ + a t

                 a = \frac{v-v_o}{a}  

Where v and v₀ are the current and initial velocity, respectively, at acceleration and t is the time

                 a = \frac{8-1}{2}

                 a = 3.5 m / s²

Let's write Newton's second law for each body

The book

                N₂ - W₂ + N₁ = m a

               

Table

                N₁ - W₁ - W₂ = M a

                W₁ = Mg

                W₂ = mg

                N₁ = (M + m) g + M a

                N₁ = (10 + 2) 9.8 + 10 3.5

                N₁ = 152.6 N

This is the reaction of the earth to the support of the block and the table

               N₂ = ma + m g  - N₁

               N₂ = m ( a +g) - N₁  

               N₂ = 2 (3.5 + 9.8) - 152.6

               N₂ = 26.6 - 152.6

               N₂ = -126 N

The negative sign indicates that the direction is opposite to the one assigned, this is the action of the block on the table.

In conclusion using Newton's second law we can find the forces of the block on the table is 126 N

Learn more here: brainly.com/question/19860811

4 0
3 years ago
The hubbles telescopes orbit is 5.6 x10 ^5 meters above earths suface. the telescope has a mass os 1.1 x10^4 kilograms. earth ex
Andru [333]
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg

Fam
7 0
3 years ago
Other questions:
  • A vessel of 0.25 m3 capacity is filled with saturated steam at 1500 kPa. If the vessel is cooled until 25% of the steam has cond
    13·1 answer
  • Which answer choice correctly describes the ball's kinetic and potential energy? Group of answer choices The ball has more poten
    8·1 answer
  • ASAP pls answer right I will mark brainiest . All I know is 4. Is A
    9·1 answer
  • How do lines of latitude affect how direct or indirect the Sun’s rays are on the Earth?
    13·1 answer
  • Light incident on a polarizer is then passed through a second polarizer. If the polarizer and the analyzer are perpendicular to
    9·2 answers
  • A minivan is tested for acceleration and braking. In the street-start acceleration test, the elapsed time is 8.6 s for a velocit
    14·1 answer
  • The H line in Calcium is normally at 396.9nm. however, in a star’s spectrum it is measured at 398,1 nm. How fast is the star mov
    5·1 answer
  • Which of these subshell designations are possible which are impossible? 1) 1d 2) 1p 3) 1f 4) 2p 5) 3s
    15·1 answer
  • A periodic wave of frequency f and speed v travel what distance in one period?
    7·1 answer
  • two identical springs of spring constant 7580 N/m are attached to a block of mass 0.245 kg. What is the frequency of oscillation
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!